
Symbolic Execution of Distributed Software

MEng Final Report

Written by Milen Dzhumerov

Supervisor: Peter Pietzuch

Second Supervisor: Cristian Cadar

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2
1.3 Approach . 2
1.4 Contributions . 3
1.5 Report Structure . 3

2 Background 5
2.1 Symbolic Execution . 5

2.1.1 Example . 6
2.2 LLVM . 7
2.3 KLEE . 9

2.3.1 Overview . 9
2.3.2 Operation & Architecture . 9
2.3.3 Query Optimisation . 10
2.3.4 State Scheduling & Environment . 10

2.4 KleeNet . 11
2.4.1 Contributions . 12
2.4.2 Concept & Design . 12
2.4.3 Evaluation . 13

2.5 MoDist . 14
2.5.1 Overview . 14
2.5.2 Implementation . 15
2.5.3 Evaluation . 16

2.6 Model Checking Without a Network . 17
2.6.1 Overview . 17
2.6.2 Evaluation . 17
2.6.3 Conclusion . 18

2.7 Summary . 18

3 Architecture, Networking & Filesystem Design 19
3.1 Requirements . 20
3.2 Approach . 21

3.2.1 World Model . 21
3.3 Architecture . 22

3.3.1 Single Process . 22
3.3.2 Symbolic Network Topology . 23
3.3.3 Copy on Send Branching . 24
3.3.4 Boot-Strapping . 25
3.3.5 OS State & Interaction . 26
3.3.6 Scheduling . 26
3.3.7 Deadlock Detection . 28
3.3.8 Closed World . 28

3.4 Networking . 29
3.4.1 Event System . 30
3.4.2 Network Topology . 31

3.5 Filesystem . 33
3.5.1 OS-backed Files . 34

3.5.2 Extra Features . 35
3.6 Summary . 35

4 Replay Framework 36

5 Failure Model 38
5.1 Packet Loss & Re-Ordering . 38
5.2 Symbolic Automark . 38
5.3 System Call Failures . 39

6 Distributed Invariants 40
6.1 Minvariant . 40

7 Implementation 43
7.1 Overview . 43
7.2 System . 44

7.2.1 Existing Model . 44
7.2.2 Modified Model . 45
7.2.3 Bootstrapping . 47
7.2.4 Event System . 48
7.2.5 World Branching . 52
7.2.6 Scheduler . 54
7.2.7 Invariants Framework . 57
7.2.8 Replay Framework . 58
7.2.9 Code Coverage . 58

7.3 Runtime . 59
7.3.1 Special Functions . 59
7.3.2 Networking . 60
7.3.3 Filesystem . 70
7.3.4 Failure Model . 75
7.3.5 Runtime Structures . 77

7.4 Summary . 78

8 Evaluation 80
8.1 Goals and Methodology . 80

8.1.1 Test Configurations . 81
8.2 Boa Web Server . 81

8.2.1 Code Coverage . 82
8.2.2 Evaluation Tests . 82
8.2.3 Bugs Found . 83
8.2.4 Results . 84
8.2.5 Untestable Code . 92
8.2.6 Summary . 94

8.3 Invariants Framework . 94
8.4 Synthetic Scenarios . 95

8.4.1 Deadlock via Packet Loss . 95
8.4.2 Fragile Parsing Code . 95
8.4.3 Fault Tolerance . 95

8.5 Scalability . 96
8.6 Limitations . 102

8.7 Summary . 103

9 Development Methodology 105
9.1 Code Base . 105
9.2 Tools & Language . 105
9.3 Testing . 106

9.3.1 Test Example . 106

10 Conclusion 108
10.1 Future Work . 108

A Evaluation Test Configurations 111
A.1 Boa . 111

A.1.1 GET Requests . 111
A.1.2 Function List . 111
A.1.3 Non-Symbolic Runs . 115
A.1.4 Symbolic Runs . 116
A.1.5 Constrained Symbolic Runs . 118
A.1.6 Failure Injected Runs . 119

A.2 Invariants . 119
A.3 Scalability Tests . 119

A.3.1 Deadlock Detection Runs . 120
A.3.2 Network Size Runs . 120
A.3.3 Packet Loss Runs . 120
A.3.4 Symbolic Communication Runs . 121
A.3.5 Filesystem Transfer Rate . 121
A.3.6 Network Transfer Rate . 122

Abstract

Verification of program correctness is one of the most important aspects of software
development. One particular approach to automatically testing programs is symbolic execu-
tion. This report documents the development of a system that enables symbolic execution
of distributed software which uses network sockets for communication.

We explore the design and implementation of the essential facilities to simulate dis-
tributed software – namely, the networking and the filesystem layers. Furthermore, we
examine the effects and performance of automatically injecting system call failures and
constraining symbolic input. We also present Minvariant, a new language used to express
invariants over network nodes. Finally, we evaluate the performance of our system using
real-world production software[3].

Acknowledgments

First and foremost, I would like to thank my parents for their continuous support and encour-
agement to pursue my dreams throughout my life. I would like to express my deepest gratitude
towards my two supervisors, Peter Pietzuch and Cristian Cadar, for their relentless guidance,
ideas, advice and constructive criticism without which this project would not have been pos-
sible. I will also be forever grateful to Tony Field, Susan Eisenbach, Ian Hodkinson and Iain
Phillips for “opening” my eyes and completely changing the way I see the world. Finally, I’d like
to thank Chris Emery for always challenging my views, providing me with invaluable guidance
and being there along every step of the journey.

1 Introduction

In this section, we provide the motivation behind this project, clarify our aims and approach,
provide an overview of our contributions and finally present the structure of the report.

1.1 Motivation

Ever since the beginning of the software industry, computer programs have been used in an
increasing number of industries. The majority of devices that we use on an everyday basis are
powered by software – whether that would be cars, phones or TVs, it is virtually impossible to
find places where software is not being used. Together with the increasing usage of software,
there has been an explosion in its complexity, both internal and external.

The exponential increase in software complexity brings almost as many problems as it solves.
It has become particularly hard to ascertain the correctness of software – even for mission-critical
systems. In 1996, the Ariane 5[4] rocket suddenly changed its flight direction path about half
a minute into flight and had to self-destruct itself due to very high aerodynamic forces. The
problem originated from the software – there was a data conversion overflow that was not
handled which cascaded in the upper layers and started a chain reaction that eventually led
to the destruction of the rocket. Those accidents are not isolated cases. Another high profile
software disaster was the Therac-25[9] radiation therapy machine. During its use, patients were
given enormous overdoses of radiation.

Contributing even more to the already complex software landscape was the introduction
of computer networking, whereby programs that run on different machines (virtual or real)
can communicate with each other. One of the challenges when it comes to verification of
distributed software is the non-deterministic behaviour of the network nodes and the virtually
infinite interaction combinations. The non-determinism creates an explosion in possible state
combinations which in turn affects the complexity of the software.

Given the challenges that the computer industry has always been facing, it was obvious at
an early stage that programs need to be verified for correctness, especially in mission-critical
environments. There are two broad types of software verification that are currently in use:

• Dynamic Verification

Dynamic verification involves running the software in question. There are several ways
dynamic verification is performed – either manually by testers or in an automated fashion,
but in all cases the actual behaviour of the program is checked.

• Static Verification

In contrast to dynamic verification, static verification does not run the software but only
analyses the source code or an intermediate representation of it. One of the most time-
consuming and expensive methods of static verification is formal verification whereby the
behaviour of the software is mathematically modelled and then properties are proven
based on that model.

In this report, we focus our attention on software testing and some of its associated issues.
There has been an enormous increase in automated software testing over the last 10 years, which
gave birth to a development processes named Test-Driven Development[1] (TDD). Writing unit
tests is a common practice in most companies, especially when working on green-field projects
because it is a lot easier to write unit tests when the code is designed with testability in mind
as opposed to trying to retrofit unit testing into an existing architecture. Even though unit
testing is widely practised in the industry[5], the vast majority of software in current use does

1

not have any automated test suites and relies on quality assurance (QA) teams to ensure its
correct operation. There are even cases where very old software keeps getting used without
modification due to the fragility of the code and the potential disruption to business.

A particularly hard class of applications to test, either via automated tests or manually,
are distributed systems. There have been no general solutions to the problem of testing arbi-
trary distributed systems – the reason comes from the complexity due to multitude of network
topologies and the non-deterministic interaction of all the participants. It is particularly hard
to automatically test those systems due to several reasons:

• Test Environment

There is an inherent complexity in setting up various network topologies, distributing the
final product and testing it. For many projects, the costs of the infrastructure and its
maintenance outweigh the benefits and the software might only be tested as a single entity
(and its internal subcomponents).

• Code Coverage

Setting up multiple test environments does not guarantee that all code-paths will be
tested. In distributed systems, there are many potential edge-cases that rarely occur in
practice (excessive packet loss, packet corruption, etc.) which have the potential to bring
the whole system down. If the testing environment does not have the ability to simulate
those, there will be important code paths that would have never been tested properly.

• Distributed Properties

Distributed systems usually interact to achieve a common goal and certain properties
of the system exist that should be invariant across the nodes. Unless there are specific
mechanisms exposed to access the necessary information for verification, their truth value
cannot be verified. It should be noted that even if a protocol that establishes certain
properties over the system might be proven to be correct, its implementation might have
bugs which invalidate the properties. In practice, a lot of security-related issues are due
to the implementation details and not the protocol.

Manually testing distributed systems is a virtually impossible task for any non-trivial piece of
software, mainly due to the enormously high number of possible configurations and interactions.
Another problem associated with the correctness of distributed software is that the correctness
of a single entity or a particular configuration does not give any guarantees for the system
correctness in other settings.

1.2 Aims

The main goal of this project is to investigate the feasibility of automatically testing distributed
software by building a system that allows to symbolically execute programs that communicate
over a network. One of the crucial requirements for the system is that it should be able to
test arbitrary programs without the need to modify them in any significant ways. In addition,
any testing methodologies that are introduced should be orthogonal to any pre-existing testing
practises.

1.3 Approach

We will be building the system by modifying an existing symbolic virtual machined named
KLEE[2]. Building upon the foundations provided by another system allows us to focus on the
issues relevant to symbolic execution of distributed software.

2

One of the reasons for taking a symbolic approach is due to the inherent capabilities of the
technique to provide very high code coverage without manually writing tests. In particular,
KLEE was chosen as a foundation for the following reasons:

• Built on LLVM

Because KLEE actually works with LLVM bitcode, the source language of the distributed
system can vary. Thus we can test any system as long as there is a compiler from the
source language to LLVM bitcode. At the the time of writing, C, C++ and Objective-C
can all be compiled to LLVM bitcode.

• Unmodified Source Code

Because KLEE is essentially a symbolic execution engine that interprets LLVM bitcode,
there is no need to modify the original source code. Intrusive testing systems that re-
quire changes to the source code (or complete rewrites) have an associated cost and can
inadvertently modify the actual behaviour of systems.

1.4 Contributions

This project made the following contributions:

• Symbolic Execution of Distributed Software We designed and implemented a sys-
tem which can be used to symbolically execute arbitrary distributed software which uses
network sockets for communication.

• Replay Framework We designed and implemented a replay framework that can be used
to reproduce issues found by our system.

• Failure Model We designed and implemented a failure injection model while also eval-
uating its effects on code coverage metrics.

• Distributed Invariants We designed a language to express invariants over network nodes
and implemented support for it as part of our system.

• Web Server Evaluation We evaluated the performance of our system on a minimalistic
production web server[3]. We uncovered 2 critical bugs which lead to the server becoming
inoperative. While evaluating the effects of symbolic data in HTTP requests, we managed
to achieve 99.8% of the code coverage upper bound for our test scenario.

• Scalability Evaluation We evaluated the scalability characteristics of our system by
performing a variety of synthetic tests whose aim was to quantify the practical limits
when symbolically executing distributed software.

1.5 Report Structure

We continue with the Background (section 2) which provides introduction to concepts that are
essential to the project. We also provide an overview of any relevant previous work in the
symbolic execution and software verification space, making sure provide some details about
LLVM itself.

Afterwards, in section 3 we take a deeper look at the specifics of how our system works from
a high level and provide the rationale for our design decisions. Specific issues pertaining the
limits of our system are also discussed.

3

In Replay Framework (section 4) we present a way for issues found by our system to be
reproduced by running the software under test natively instead of simulating it symbolically. In
Failure Model (section 5) we present a way to artificially inject low-probability events in order
to increase code coverage. In Distributed Invariants (section 6), we introduce a framework
and domain-specific language that allow the expression and verification of invariants across
distributed systems.

In Implementation (section 7), we reveal the most important details about how our system
works. We take a look at how we have implemented networking, our own filesystem and how
we have integrated our changes in a backwards-compatible way.

In Evaluation (section 8), we try to quantify the performance of our system in a series of
tests. We look at symbolically testing a web server and the inherent challenges involved in
symbolically executing software that interacts with many subsystems, include the network and
filesystem. We also cover a range of synthetic tests in order to asses the hard limits of our
implementation. Furthermore, we discuss fundamental limitations that affected the utility of
our system.

In Development Methodology (section 9), we take a quick look of the development process
and the testing methodology used. Finally, in Conclusion (section 10), we present a retrospective
look of the project goals, the targets that we hit, the lessons learned and provide an overview
of areas for future work.

4

2 Background

Symbolic execution of distributed application is an active research area and before we look into
previous work, we will cover the basics of how symbolic execution works.

2.1 Symbolic Execution

When it comes to assuring the quality and behaviour of software, the methods vary between
the two extreme points: completely formal static analysis and exhaustive manual testing. Each
end of the spectrum has its own set of advantages and disadvantages:

• Formal Verification

Formally proving the correctness of programs has the advantage that we can be absolutely
sure of the properties that we can prove – there is no doubt whether those properties
will hold only sometimes and might be invalidated in certain cases. On the other hand,
providing formal proofs is not only impractical due to costs for most non-mission-critical
software but also requires a complete formal specification so that we can determine whether
the software satisfies it.

• Manual Testing

Most, if not all, programs are tested before being released for production use. The amount
of testing and the code covered by this technique greatly varies between software vendors
and products. One of the advantages of testing the products manually is low cost of
the method – all that is needed is a Q&A team. On the other hand, a lot of resources
can be wasted by testing the same features on every release to ensure that there are no
regressions.

Moreover, there is no reliable way to determine how many of the possible test cases have
been covered and how much of the code was tested – manual testers usually focus on the
most common use cases for the software in question.

Using symbolic execution for testing stands in-between formal verification and manual test-
ing. It is a testing approach that has been in increasing use over the past decade while also
finding real bugs and vulnerabilities in applications.

The basic premise of symbolic execution is as follows: instead of executing programs on real
values, we use symbolic values which represent arbitrary values, possibly constrained. If we
compare it with manual testing, one of the advantages of symbolic execution is that we do not
only explore the behaviour of the program for particular values but for a set of classes of values.

One of the most important aspects of symbolic execution is the handling of branching
instructions which involve symbolic values. Because the symbolic value represents a class of
values, it is possible that both paths can be taken. A symbolic execution engine would in
this case would try to explore both code paths, adding the constraints implied by the branch
instruction to each execution path.

The symbolic execution of the program can be visualised as a tree which defines the execution
path being simulated. Each leaf node represents a program state while non-leaf nodes represent
branching1 due to executing branch instructions on symbolic values. By definition, the leaf
nodes are characterised by the tree path followed to reach them – each time a decision is
made to follow a particular tree child node, an additional constraint is added to the current
path condition. In order to demonstrate the concepts in a more straightforward, a symbolic
execution example follows.

1Also referred to as forking, which should not be confused with the fork call. Unless explicitly stated
otherwise, forking refers to branching.

5

2.1.1 Example

We will illustrate how symbolic execution works by walking through a piece of code that caused
all Microsoft’s Zunes to be stuck in an infinite loop on the 31st December 2008. The code has
been modified so that a symbolic execution engine can find the error, although the change is
immaterial to understanding the principle of symbolic execution.

Before we take a look at the execution, we need to point out the important aspects of the
code. Lines 7–9 were added so that the symbolic execution engine can catch the bug. The issues
lies in the fact that no progress is made in the loop for the case when line 8 gets executed, so
the code will be stuck in an infinite loop.

Listing 1: Showing an infinite loop in the clock driver on the Microsoft Zune.

1 while (days > 365) {
2 if (IsLeapYear(year)) {
3 if (days > 366) {
4 days -= 366;
5 year += 1;
6 }
7 else {
8 assert(0);
9 }

10 }
11 else {
12 days -= 365;
13 year += 1;
14 }
15 }

Assume that the symbolic execution engine is about to execute the code on line 1 and that
the variables days and year are both symbolic without any constraints. Figure 1 shows a
graphical representation of the execution.

1. while (days > 365)

This line of code gets translated as a branch instruction when compiled to machine code.
In this case, the symbolic execution engine would see a comparison based on a symbolic
variable. Execution would need to branch in two – one where days is greater than 365
and the other where days is less than or equal than 365.

2. if (IsLeapYear(year))

The branch which follows the path where days is greater than 365 will encounter the next
branching instruction that checks whether the year is leap. Again, there are two possible
outcomes and both paths will be followed.

3. if (days > 366)

The execution path where the year is leap will need to execute the above branch instruc-
tion. Again, both paths will be explored. We are only interested in the path where days
is less than or equal to 366.

4. assert(0)

Following the path where the if check fails leads to a failing assert. The execution engine
has recorded the constraints for all the symbolic variables that lead to the assertion to be
reached. A regression test case can be generating by solving the constraints and picking
any sets of values for the variables that satisfy the constraints.

6

A

days <= 365 days > 365

B

IsLeapYear(year)~IsLeapYear(year)

C D

days > 366days <= 366

Figure 1: Symbolic execution tree for the clock driver code. Note state C contains a failing
assert that will trigger the generation of a test case. In order to generate concrete values the
symbolic variables, all constraints along the path must be satisfied. For example, to reach state
C days must equal 366 and the year must be leap.

2.2 LLVM

LLVM[8] stands for Low Level Virtual Machine and is a flexible compiler infrastructure that
was started in 2000. Since its inception, the project’s popularity and use increased manyfold
and currently underpins the development tools for Mac OS X and iOS.

One of the advantages of using LLVM are the great number of front-ends available which
will only be increasing in the future. One of the consequences is that tools built on top of the
LLVM infrastructure can be used in conjunction with a variety of source languages.

At the core of LLVM sits the intermediate representation (IR). It has three isomorphic
forms:

• Assembly

The assembly format is user-readable and very similar to assembly code for traditional
processors.

• Bitcode

The bitcode form is a tightly-packed binary form which is mainly used when the IR has
to be exchanged between different programs. Tools built on LLVM usually work with
bitcode.

• Internal Representation in C++

LLVM itself is written in C++ and there is a class hierarchy that represents the IR –
it also has support for easy conversion between the various forms. Tools usually read in
bitcode and then transform it to C++ objects which represent it and perform their work
on that representation.

7

The LLVM intermediate representation is fairly high-level – for example, function calls are
not expanded to pushing & popping stack frames. The representation also is heavily typed and
can include metadata that is used during the optimisation passes.

Listing 2 shows a simple program written C that contains a function to check whether a
character is an ASCII digit. The program’s entry point just calls the function and prints the
results to the standard output.

Listing 2: C program to check if a character is an ASCII digit.

1 #include <stdio.h>
2 #include <string.h>
3
4 int is_ascii_digit(char ch) {
5 if(ch >= ’0’ && ch <= ’9’)
6 return 1;
7 return 0;
8 }
9

10 int main(int argc, char* argv) {
11 int is_ascii = is_ascii_digit(’5’);
12 printf("ASCII: %d\n", is_ascii);
13 return 0;
14 }

Listing 3: LLVM assembly for the program in Listing 2.

1 define i32 @is_ascii_digit(i8 signext %ch) nounwind readnone ssp {
2 entry:
3 %0 = add i8 %ch, -48 ; <i8> [#uses=1]
4 %1 = icmp ult i8 %0, 10 ; <i1> [#uses=1]
5 %.0 = zext i1 %1 to i32 ; <i32> [#uses=1]
6 ret i32 %.0
7 }
8
9 define i32 @main(i32 %argc, i8* nocapture %argv) nounwind ssp {

10 entry:
11 %0 = tail call i32 @is_ascii_digit(i8 signext 53) nounwind ; <i32> [#uses=1]
12 %1 = tail call i32 (i8*, ...)* @printf(i8* noalias ..., i32 %0) nounwind ; <

i32> [#uses=0]
13 ret i32 0
14 }
15
16 declare i32 @printf(i8* nocapture, ...) nounwind

Listing 3 shows the code compiled to LLVM assembly. There are several notes of interest:

• Types

Function definitions contain the return types and also the types of its arguments, together
with any metadata. In addition, function calls also contain the types of their arguments
and the return type – the intermediate representation can very easily be verified for type-
safety.

• Metadata

Function declarations include metadata (known as function attributes) which allows the
compiler to emit more efficient code.

8

– nounwind

Indicates that the function never returns with an unwind or other exceptional control
flow.

– readnone

Indicates that the function only needs its arguments to compute the result – it does
not dereference any pointers and does not access any mutable state, as far as the
caller is concerned.

– ssp

Indicates that during code generation, a “stack smashing protector” should be emit-
ted. It is usually a random value pushed on the stack before the local variables that
is checked on function return whether it was overwritten (thus detecting memory
corruption).

2.3 KLEE

KLEE[2] is a symbolic execution engine that is built on top of the LLVM infrastructure. KLEE
can automatically test software and also has the ability to generate regression test cases for any
bugs that are found.

2.3.1 Overview

KLEE is one of the latest tools in the symbolic execution area that has produced tangible results
and found bugs in already heavily tested software. It can achieve very high code coverage at a
fraction of the costs if it had been done manually and can potentially find serious security bugs.

2.3.2 Operation & Architecture

At its core, KLEE is a symbolic interpreter for LLVM bitcode which has two fundamental goals:
to cover as many execution paths as possible and to detect any illegal operations (for example,
dereferencing NULL pointers). Internally, each symbolic process (referred to as state) represents
an instance of the application being tested – it has its own program counter, registers, heap,
stack and quite importantly – a path condition. The path condition is a set of constraints on
the symbolic variables which lead to the current process state.

When KLEE encounters conditional branches involving boolean expressions, it needs to
decide how to proceed with the execution. Firstly, it asks the constraint solver whether the
condition is either provably true or false – in which case, the instruction pointer is adjusted
appropriately. If the value of the branch condition cannot be determined, KLEE will clone the
current state and then explore both paths, corresponding to the two possible branch conditions.
While interpreting the bitcode, safety checks are performed – for example, loads and stores are
bound-checked, while any arithmetic is checked for division by zero.

Given that every branch instruction that operates on symbolic data can result in the cloning
of a state, symbolic execution and KLEE suffer from the exponential state explosion problem.
In order to minimise the impact of cloning and allow for a large number of states to be resident
in memory, aggressive copy-on-write is employed at the memory object level (as opposed on
memory page level). Due to the implementation of the heap as an immutable map, parts of the
heap can also be shared across states which makes it possible to clone in O(1).

9

2.3.3 Query Optimisation

During the evaluation stage of KLEE, it was revealed that the majority of the time is spent
solving constraints due to the fact that the logic produced by KLEE is NP-complete. Some of
the optimisation techniques that were employed follow:

• Expression Rewriting

Expressions can usually be rewritten when they involve constants or can be reduced to
less complex ones. For example, x + 5 + 3 < 9 can be rewritten as x < 1.

• Constraint Set Simplification

While KLEE executes programs symbolically, it adds constraints each time branch instruc-
tions necessitate following multiple execution paths. In practice, multiple constraints refer
to the same symbolic variable and the constraints usually become more concrete which
allows for the wider constraints to be eliminated. For example, a constraint y > 6 could
have been added and subsequently y = 10 added as well. Substituting the value of 10 into
the first constraints makes it evaluate to true, thus it can be eliminated.

• Implied Value Concretisation

It is possible that certain constraints imply actual values for symbolic variables. In that
case, the concrete value inferred can be written back to memory which will result in very
fast execution for any expressions that reference the symbolic variable later during the
execution. For example, given the expression x− 3 = 10, x = 7 can be inferred and then
substituted by a constant expression.

• Constraint Independence

The constraint solver is used in a specific way: it is given a set of constraints and a query.
Minimising the number of constraints can significantly speed up the time spent evaluation
queries. It should be noted that not all constraints are needed when computing the answer
– only constraints that refer, directly or indirectly, to the variables that are part of the
query. Thus eliminating any irrelevant constraints provides significant time savings. For
example, lets assume that the current path condition contains the following 3 constraints:
{a+ b < 20, b < 5, c > 15} and the query is whether a = 4 – the third constraint, c > 15,
is irrelevant in this situation while the other 2 are needed.

Query optimisations are very important because they provide significant savings to the run
time. Running the coreutils suite symbolically under KLEE revealed the following data:

• Without any optimisations, constraint solving absolutely dominates the run time – ac-
counting for 92% of the execution time.

• Turning on all optimisations reduces the the overall run time by almost 300% and min-
imises the time spent solving constraints to about 41%.

2.3.4 State Scheduling & Environment

When KLEE symbolically executes a particular program, it is simultaneously exploring many
execution paths and conceptually running multiple instances of the program with different
inputs. It is very important to correctly schedule the execution of those states, so that it results
in increased code coverage and bugs found. KLEE combines two strategies in a round-robin
fashion to provide the best possible exploration pattern:

10

• Random Path Selection

The random path selection algorithm works by starting at the root of the state tree and
selecting a random path to follow at each branch, thus the probability of selection of each
branch is 50%. The strategy has two properties that make it better than random state
selection: firstly, states higher in the tree are more likely to be selected and secondly,
it avoids starvation if a subtree starts to rapidly fork. States higher in the tree are
generally more desirable because they have less constraints, thus can potentially cover
more execution paths.

• Coverage-Optimised Search

KLEE also uses some heuristics to select states that are more likely than others to increase
the code coverage ratio. One of those heuristics is the minimum distance to the next
uncovered instruction.

Most applications interact with the environment to some extent or other, whether that
would be reading files, performing networking or getting the values of environmental variables.
Ideally, when system calls are symbolically executed, we want to return all possible values that
can be produced in order to explore as many execution paths. KLEE handles environmental
functions by using models which are written in C to simulate the behaviour of the functions
they implement. The execution engine also has the ability to simulate the failure of system
calls, thus exercising code paths that very rarely get tested.

2.4 KleeNet

KleeNet[13] is a system, built on top of KLEE, designed to execute unmodified programs written
for sensor networks. Wireless Sensor Networks (WSN) are usually deployed in remote places
without any infrastructure and left for long periods of time. Thus it is very important that the
system can operate reliably without any intervention, in an environment where the networking
can be very lossy and sensors can fail at any point in time. Due to the usually high costs
associated with maintaining and repairing WSNs, it is very desirable to achieve very high code
coverage.

Bugs that are found in WSNs are usually caused by low probability non-deterministic events
that are hard to simulate in a controlled test environment, such as:

• Corrupted Network Packets

In a real environment where WSNs are deployed, the nodes are usually connected using
unreliable ad-hoc infrastructure where packet corruption does occur and can cause faulty
node behaviour.

• Complex Node Interaction

Due to the non-deterministic nature of networking events and the resulting node inter-
action, only a very limited fraction of the possible scenarios can be tested in practice.
Symbolic execution tries to explore as many combinations as possible.

• Non-Deterministic Events

When WSNs are deployed in remote locations, a number of events can occur, like spo-
radic node reboots or complete node loss, which lead to scenarios which have not been
thoroughly tested and can have unpredictable results on the network behaviour.

11

2.4.1 Contributions

KleeNet provided four important contributions for testing WSNs:

• Coverage

KleeNet allows for the symbolic execution of unmodified network applications. By driving
the execution by using symbolic inputs from the environment, a much higher code coverage
can be achieved.

• Non-Determinism

KleeNet simulates the loss, corruption and duplication of network packets during the
symbolic execution which increases the chance of finding corner-case bugs.

• Distributed Assertions

KleeNet has the ability to perform assertions on the distributed state of the system. This
is useful when the correctness and convergence of network protocols needs to be tested.
The only disadvantage is that the assertions have to be written manually by people who
understand the software and protocols being tested.

• Repeatability

KleeNet has the ability to generate and replay test cases whenever any bugs are found.
This feature provides immense help when trying to localise the issue and fix the root
cause.

2.4.2 Concept & Design

The basic operation of KleeNet can be demonstrated with a simple example. We can assume
the existence of different network nodes: A, B and C. When a packet is sent from a node A to
a node B, there are several possible outcomes, all of which are simulated:

• Invalid Packet

When a network packet is received, it is checked for validity. It is possible that the packet
is malformed and thus discarded.

• Local Delivery / Forwarding

After a packet has passed the validity check, it might either be destined for the current
node, B, or needs to be forwarded to another node.

KleeNet also injects non-deterministic events during symbolic execution. It is possible that
in any of the possible execution paths that were explored, a node shutdown or reboot be injected,
consequently exploring a yet another possible event combination.

Symbolic input plays a very important role in achieving high code coverage when symboli-
cally executing programs. KleeNet users have the ability to mark variables as being symbolic
(a feature inherited from KLEE). Since distributed network applications are mostly driven by
input from the network, a lot of scenarios can be explored by marking network packets as
symbolic. For example, programs usually have logic that uses the packet header in order to
properly handle the data that has arrived. Making the header symbolic will exercise the code
to ensure that all possible headers, including malformed ones, are properly handled. One im-
portant observation that KleeNet revealed was that the execution time, in practice, did not
grow exponentially because the sensor network applications were designed to work in a resource
constrained environment which kept the possible execution paths to a minimum.

12

KleeNet features a node model that simulates low-probability non-deterministic events, such
as node reboots and node outages. These can occur in WSNs deployments due to bugs in the
operating systems or due to hardware failures. Such failures are usually very hard to test against
and generally guide the code into corner cases that might not be handled properly, consequently
revealing serious flaws in the software. A node reboot event is implemented by branching the
state selected for reboot in two: in the first state, execution continues as normal while the
second state is reset and reinitialised so that it simulates relaunching the application. In terms
of complexity, node reboots do not have direct impact on the number of execution paths because
rebooting resets the state to the initial state, which has already been visited.

KleeNet also includes a network interaction model that increases the overall code coverage.
It can simulate three types of non-deterministic events:

• Packet Loss

Packet loss usually occurs on unreliable networks and is especially common in WSNs. The
system can inject symbolic packet losses where the packets never reach their destination,
thus testing the execution paths that deal with those infrequent events.

• Packet Duplication

Similar to packet loss, packet duplication happens quite often in deployed WSNs. In
practice, it was found that packet duplication can lead to disastrous behaviour and uncover
complex interaction bugs.

• Packet Corruption

Packet corruption attempts to discover new execution paths by randomly corrupting ar-
bitrary packets. Corruption usually reveals bugs in the packet parsing and verification
logic.

The number of packets that are dropped, corrupted or lost can be configured before sym-
bolic execution begins. In practice, it was sufficient to set the number of packet failures to a
relatively low number (e.g., 20) in order to cover all possible execution paths that deal with
such circumstances. It was revealed that increasing the amount of such events did not lead
to discovery of further bugs because it did not give rise to uncovered distributed application
behaviour.

It is usually very hard to analyse the consistency of distributed state in conventional testing
environments. KleeNet provides the ability to specify assertions across the distributed applica-
tion state which makes it easy to find bugs in protocols or protocol implementations. It should
be noted that distributed assertions must be manually written by people who have domain
specific knowledge of the code that is being tested.

2.4.3 Evaluation

KleeNet was successful in finding critical bugs in a TCP/IP stack that were caused by non-
deterministic events, such as packet loss and packet duplication. One of the bugs found can be
rated as highly severe and resulted in refusal to accept any further connections.

Several limitations were identified while trying to test and debug applications:

• Symbolic Input

KleeNet suffers from the state explosion problem with relatively small-sized symbolic
inputs, even with a low number of network nodes. The problem is amplified further by
the injection of non-deterministic events, such as packet loss, duplication and so on. In

13

order to work around the problem, domain-specific knowledge of the application being
tested can be used to minimise the amount of symbolic input in order to avoid simulating
an excessive number of execution paths.

• Automation

Symbolic inputs and distributed assertions have to be manually specified. Knowledge
about the application that is being tested is required in order to introduce symbolic input
that will result in producing relevant test traces and provide a high code coverage ratio.
On the other hand, the injection of non-deterministic events is automatic and there is no
need for user intervention.

• Application Domain

KleeNet is designed for symbolically testing applications by implementing application-level
networking primitives, as opposed to being designed for MAC-level debugging.

2.5 MoDist

MoDist[15] is a model checker that was designed to test unmodified distributed applications
which run on unmodified operating systems. In contrast to KleeNet, it does not use symbolic
execution to guide the execution but instead influences the system’s behaviour by simulating
non-deterministic events, such as packet reordering and node outages.

Model checking tools work on a simple principle – they try to test applications by trying to
exhaustively traverse all execution paths. In order for model checkers to be able to guide the
execution, the system under test needs to expose a set of possible actions that can be taken at
certain points during run time. Usually, manual modifications to the systems are needed to be
able to test the applications and in some cases, complete rewrites in domain-specific languages
are necessary. Performing such modifications, especially on large-scale production software,
places an enormous burden on the developers.

MoDist takes a different approach and does not require any modifications to the systems
under test or the operating system. It achieves this by inserting a layer between the OS and the
application code (transparent interposition) which allows it to infer the set of possible actions.
Once the actions have been inferred, a model checking engine makes decisions about which one
to take.

2.5.1 Overview

MoDist is tailored towards testing distributed systems that run as separate OS processes and
communicate using network sockets.

It consists of two logical components: an interposition layer that is injected into every
process that is being tested and a separate backend (another OS process) that communicates
with the interposition layers via remote procedure calls. The interposition layer is kept as simple
as possible to avoid modifying the original behaviour of systems under test. The backend is
composed of five logical parts: a dependency tracker, a failure simulator, a virtual clock, a
model checking engine and a global assertion module.

The interposition layer’s aim is to determine the set of possible actions dynamically at
runtime and let the backend have the ability to schedule them. This is achieved in two steps, by
firstly suspending the processes just before they execute actions while also notifying the backend
and secondly, by letting the backend control the outcome of the action – whether it will succeed
or fail. Even though the interposition layer depends on the specific OS, the backend does not
and can be reused regardless of the underlying platform.

14

The dependency tracker in MoDist has the responsibility to control the action dependencies
between the different processes. It can compute the set of possible actions for a particular
process which is needed to guide the execution – if the backend instructs the interposition
layer to perform an action that will result it to block in the OS, then the target system will
be deadlocked. The failure simulator’s role is to inject rare events that usually do not occur
very often and are very hard to produce in a test environment. The failures are injected
deterministically so that any program errors can be reproduced with ease. MoDist features a
virtual clock that resides in the backend which has two responsibilities:

• Heuristically find timers and fire them as instructed by the model checking engine. In
practice, timeouts are checked soon after calls to gettimeofday.

• Ensure the consistency of time across the distributed system.

The model checking engine sits at the core of the backend and drives the execution of
distributed system. Search heuristics and optimisations to reduce the state space are employed
to provide adequate performance and provide high code coverage. MoDist also has the ability to
check assertions across the state of the distributed system which can uncover interaction bugs
that cannot be found by using assertions on a per node-basis.

In addition to providing global assertions, MoDist detects two more types of errors:

• Fail-Stop Errors

Those are errors that are triggered by the operating system when the program tries to
access invalid memory, divides by 0 or encounters a failing assert.

• Divergence Errors

MoDist keeps track if the systems under test become unresponsive for an extended period
of time (10 seconds by default) due to a deadlock or an infinite loop. If it determines that
a system has stopped responding, it will report it as a divergence error.

2.5.2 Implementation

The implementation of MoDist is based on intercepting calls to the WinAPI, which was chosen
due to its ubiquitous use by libraries and application. Two main goals were set from the start:

• Deterministic Execution The execution traces that MoDist produces should be deter-
ministic so that errors can be reliably reproduced and to avoid any false positives.

• Tailored towards Distributed Systems MoDist was tailored towards distributed sys-
tems which made it easier make certain assumptions and avoid more general solutions
that would have suffered in efficiency.

The interposition layer sits between the application and the OS by intercepting function
calls to WinAPI and allows the backend to control their behaviour. It has two main aspects:
its implementation complexity plays an important role because it needs to avoid changing
the behaviour of the host application and also be deterministic & consistent. The second
aspect of the layer is the IO abstraction: in order to make the backend more portable and also
simpler, it needs to abstract the specifics of the IO subsystem in WinAPI. Because MoDist
is tailored for testing distributed systems, only the relevant subset of the WinAPI functions
had to be interposed, namely the networking, time, filesystem, memory and thread related
sets. Most of the WinAPI wrappers followed a simple model: send a message using RPC to
the backed and wait for a reply whether to inject a failure or proxy the call to the actual

15

WinAPI function. Abstracting the Windows Network IO was a complex task due to several
factors: there is a relatively high number of functions dealing with IO, they are asynchronous
and are in themselves non-deterministic due to network failures. MoDist addresses those issues
by abstracting related network operations in a single entity in order to reduce the size and
complexity of the implementation while implementing asynchronous IO by using a synchronous
API in a proxy thread. In addition, extra care was taken with the placement of error injections
to ensure error reproducibility.

The dependency tracker in MoDist plays a very important role by trying to prevent the
deadlock of the target systems. It does so by defining whether any two actions are dependent
as follows: two actions are dependent if and only one can enable the other or executing them
in a different order leads to different states. MoDist can compute the set of possible actions
at any point and exactly one of them is chosen to preserve determinism (all other actions are
paused).

MoDist also features a virtual clock manager that has the ability to simulate timeouts and
accelerate the passage of time. In practice, most programs use implicit timers whereby they read
the current time and perform some arithmetic on it to check for a timeout. Analysing Berkeley
DB revealed that in over 92% of the cases, only a small number of instructions separate the
function call to query the current time and the check for a timeout. Handling implicit timers
follows a 3 step process:

1. Static Analysis The code is statically analysed for all the function call sites that return
the current time. Doing the analysis statically means that there is no associated run time
penalty.

2. Data Flow Analysis The data flow of the returned time value into variables is tracked.

3. Time Value Branching If there is a branch instruction involving the time value, a
constraint solver is run in order to determine the values that need to be returned by the
function that returns the current time so that both branches are traversed. Later during
execution, the virtual clock manager will try to cover as many possible execution paths
by making sure it returns values that will cover both branches (on separate occasions).

2.5.3 Evaluation

MoDist was applied to three real-world distributed production systems:

• Berkeley DB

Berkeley DB is a library that provides an embedded key-value database. It is widely used,
most notably by Subversion and MySQL.

• MPS

MPS is an implementation of the Paxos algorithm by a Microsoft product team. Paxos
allows a group of unreliable network nodes to achieve agreement.

• PacificA

PacificA is a replication framework for log-based database systems that was designed by
the team behind MoDist.

Evaluating MoDist on the above systems revealed a total of 35 bugs that have not been
reported before. More importantly, 10 of those (about 29%) were protocol-level bugs which
result from unexpected network communication interleaving and node outages. The discovery

16

of the protocol-level bugs is especially important as they reveal flaws in the communication
protocol which are almost impossible to be found by testing a single node in isolation.

MoDist made several interesting findings. First and foremost, all systems were found to
exhibit protocol-level bugs that were the result of implementation details for unspecified parts
of the specifications that are left to the implementors – even though the distributed protocols
are theoretically sound, their implementations were not. Furthermore, in order to be able to
reliably reproduce any errors found, non-determinism has to be eliminated. Domain knowledge
plays an important role in guiding the execution into corner cases and as a result provides better
code coverage.

2.6 Model Checking Without a Network

In this section, we provide a overview of an alternative approach to model checking networking
systems, described by Guerraoui, et al[7].

2.6.1 Overview

The main idea behind the paper is to follow a local approach where the network is ignored –
only the local nodes’ states are explored, separately. The reason for choosing this alternative is
to avoid the rapid explosion of the global system state. Notably, the set of valid global system
states is just a subset of all combinations of the states of local nodes. By exploring the behaviour
of each node on its own, it is possible to reach states that might not be a valid at the global
level – this is checked for after any issues have found in order to avoid false positives. While
the approach does not eliminate the exponential state explosion problem, it postpones it until
deeper levels.

As already noted, all combinations of local node states do not result in valid global states
due to ignoring of the network element. The approach taken results in completeness – any
violation of a global state invariant that can be detected by a global approach can be detected
by the local approach presented in the paper. On the other hand, it is unsound meaning
that it detects invariant violations on invalid global states. The issue is addressed by verifying
that any violations that are found are violations on valid global states. The importance of this
method is that the check needs to be performed only after any violations have been found – if
that number is low, as it turned out for a particular Paxos test described in the paper, it results
significant speed-ups.

2.6.2 Evaluation

The performance of the system was evaluated against a classic global approach when trying to
find bugs in Paxos and its variant 1Paxos. The tests were performed in a network setup with
three nodes where one proposes a value and the others react to the proposition as defined by the
Paxos protocol. During the tests, 3 systems were compared – a classical system that explores
global states, a general system which implements the local approach and a specially optimised
local approach system tuned for verification of Paxos.

Speedup The speed of the approach was measured when only one value was proposed. The
state space has a depth of 22 which is relatively small. Using the classic global system, exploring
the state space takes 1514 s while the optimised local system takes only 189 ms (8,000 times
faster) and the general local system takes 5.16 s (300 times faster compared to the global
approach). The number of transitions that were performed by the global and the general local
systems, were respectively 157,332 and 1,186 (132 times less). The reason for the large difference

17

is because the global method redundantly executed transitions multiple times which the local
approach only explored once.

Scalability Limits In order to test the scalability of the local approach, the depth of the
state space was increased to 41 events where two nodes each propose two values. During the
tests, the global system and the general local system both could not finish the state exploration
after several hours of running. The reason for the slowdown in the local approach is due to the
expensive soundness verification when evaluating whether any invariant violations are on valid
global states – the number of different event sequences that must be considered when verifying
increases exponentially with the search depth.

2.6.3 Conclusion

The paper[7] presented a novel approach to model checking distributed software by removing
the network and only considering the states of each local node separately. While the approach
is complete, it is not sound. The new approach provides significant speedups for moderate
exploration depths although it does not eliminate the exponential state space increase.

2.7 Summary

In this section, we provided an overview of how symbolic execution works. We covered LLVM
and KLEE, a symbolic execution engine built on top of LLVM. Afterwards, we reviewed 3
related pieces of work – KleeNet, designed to execute programs for sensor networks, and another
2 model-checking systems – one of which follows a global approach while the other follows a
novel local approach.

18

3 Architecture, Networking & Filesystem Design

In this section, we describe the architecture of our system from a high-level point of view because
it allows us to temporarily ignore implementation details. Fundamentally, our goal is to design a
tool that enables the automatic testing of distributed software and in addition, provide facilities
for asserting the correctness of the software at higher abstraction levels.

As we are building on top of KLEE, the symbolic execution engine engine described in
Background (section 2), our changes amount to a set of extensions that enhance its modelling
and execution capabilities in a backwards compatible way.

First and foremost, it is important to highlight the two facets of KLEE and how they enable
the symbolic execution of programs. The tool can be split into two logical parts – system and
runtime. The system represents the interpreter which manages the symbolic execution – it
has global knowledge about all virtual processes, handles their memory address spaces and acts
as a virtual process scheduler. It is built on top of LLVM and it is written in C++.

On the other hand, the processes that being simulated are compiled down to LLVM bitcode
which then the interpreter runs symbolically. In order to bridge the gap between the interpreter,
a runtime is used. The runtime represents a set of C functions that are compiled to LLVM
bitcode and linked with the simulated bitcode before symbolic execution begins. The two
primary functions of the runtime are to override the behaviour of system calls and to provide
certain necessary primitives to the user programs being tested, such as marking variables as
symbolic.

Filesystem

Replay

World Model

Failure Model

Invariants

System Runtime

Networking

Figure 2: Showing the high-level view of the extensions provided by our system. Note how
Networking and Invariants require changes on both “sides” – system and runtime.

In the following subsections, we describe the components shown in Figure 2 in greater
detail. The Networking extension provides the ability for processes to communicate while the
Invariants component allows the verification of user-defined properties over processes running
in a network. In order to be able to execute most non-trivial programs, we provide a rudimentary
Filesystem. By providing a Failure Model, we can inject system call failures and steer the
software under test into rarely explored code-paths. Reproduction of any issues that are found
is made possible by the Replay framework. Finally, changes to the internal execution model are
necessary, as shown by World Model, to provide the capability to represent multiple processes

19

connected via a network.

3.1 Requirements

Before we delve into the particulars of our system, it is essential to take a step back and analyse
the requirements for tools that aim to automatically test distributed software.

Wide Software Set Tools for checking correctness should be able to test the widest possible
variety of software. This requirements puts multiple restrictions with regards to the possible
approaches that can be taken. Choosing a method that only enables the testing of a very narrow
range of software would severely limit its utility.

Symbolic Network Data The power of symbolic execution lies in the fact that programs
are tested by operating on symbolic values which consequently results in exploration of multiple
code paths. Enabling the ability to treat network data as symbolic would facilitate a deeper
examination of the communicative behaviour of distributed software and the effects network
participants can have on the global interaction.

Network Topology As the primary purpose of a correctness-verification tools are to be used
on real-world systems, any tool that attempts to be used on networked software must have the
capabilities to completely simulate any required network topology. The main reason for this
requirement is that different network topologies can give rise to varying behaviour. In addition,
specific applications might depend on specific network setups.

Performance Scaling symbolic execution to cope with large pieces of software is a complex
problem on its own. Extending it to distributed software only makes it a much harder under-
taking and thus the performance of the system should be of paramount importance.

Reproducibility Finding any issues in software is only the starting point. In order for
problems to be resolved, the ability to deterministically reproduce any faulty behaviour is an
absolute must. Providing a reproducibility framework is a very important requirement and
essentially a must-have when it comes to providing real-world utility.

Higher-Level Correctness Issues can be broadly classified into two categories: low-level
programming errors, such as segmentation faults, and logical errors. Low-level errors are a lot
easier to find and correct as they are clearly manifested in most cases. On the other hand,
logical errors are much harder to discover because their effect might be “hidden” due to the
enormous complexities of large software. Providing tools, such the ability to express invariants
over a set of network nodes, is an example of one approach that can aid in discovering such
issues.

Low-Probability Events Networks do not provide many reliability guarantees, albeit in
practice, their operation is highly reliable. In turn, this causes the code paths which handle
network and low-level failures to be relatively untested. Facilities that automatically inject such
failures can be beneficial in ensuring the robustness of software.

Throughout the development this project, we guided all of our design choices in ways that
would maximise the satisfaction of the requirements outlined above.

20

3.2 Approach

The most important aspect of our system is to allow the symbolic execution of the distributed
software. In particular, we wanted to provide that ability at the lowest level in the software
stack, which meant at the network sockets layer. The main reason for this decision was that
higher level APIs that engineers and developers are using are all based on the primitives we
chose. As a consequence, the array of software eligible for testing is greatly increased.

In essence, our system is an extension of KLEE that models multiple processes connected
via a network. Some of the reasons for choosing to extend KLEE include:

Solid Base KLEE itself is a significant step towards making symbolic execution practical for
real world applications. It is well-tested and has been used around the world for several years.
This is gives us an excellent starting point which to built upon instead of reinventing the basics.

It also allows us to focus on what is the most important aspect of this project – how to
make distributed software testable using symbolic execution.

Open Source KLEE is open source which makes it possible to extend and modify in any way
that we deem necessary. Proprietary systems would have had a limiting effect on how far we
can take things as they would have only provided a fixed set of extension hooks.

3.2.1 World Model

The way KLEE sees the world is as a single process which has branched at different points due
to bitcode branch instructions whose conditions can be both true and false (due to operating on
symbolic values). We have extended KLEE such that its model can be seen as the simulation
of a single process running simultaneously on different network nodes which are connected in
some way. The rest of this section will cover the core features of the system that were necessary
in order to provide the basic ability to symbolically execute networked programs.

A2

A1

A3

(a) Single Process Model

A3

A1

A2 A6

A4

A5

World 1 World 2

net0 net0

(b) Distributed Network Model

Figure 3: Showing the differences between the single-process model and distributed network
model. 3a shows the same process which has branched due to symbolic branch conditions.
Each process has no awareness of any of the others. In 6a, there are two alternate worlds, each
containing processes which are connected by a virtual network and can communicate with each
other.

21

3.3 Architecture

In this subsection, we aim to provide an overview of our basic assumptions and design choices
in our system together with their rationale. It is important to note that some design choices
are consequences of the practical nature of this project, as we are trying to both explore the
limits and utility of symbolic execution of distributed software while trying attain adequate
performance in real-world applications. We attempt to answer questions that bound the mod-
elling power of the system, such as the set of the network topologies that can be explored, the
semantics of simulating multiple worlds, the interaction with the operating system and several
others.

3.3.1 Single Process

Simulating the execution of distributed software naturally raises the important question whether
the simulation itself should be distributed. The two basic approaches that can be taken can be
summarised as:

1. Re-create the networking setup and execute each process symbolic on a single node (run-
ning multiple instances of KLEE). Support would have to be added in order to connect
up all the different instances of KLEE that are running on the different machines.

2. Model the execution of the whole system (i.e., all possible worlds) within one instance of
KLEE.

BA
CD

(a) Single Instance

Network B

A

C

D

(b) Multiple Instances

Figure 4: Showing the differences between the single-instance and multiple instances architec-
tural choices. 4a shows a single instance of KLEE running on a computer which holds all the
information. In 4b, the global state is distributed across 4 instances of KLEE connected via a
network. Each instance contains only part of the state.

At first glance, option one might seem a good approach. It possesses one very desirable
property – by design, it is concurrent and automatically utilises the resources of all the machines
that it is being run on. Unfortunately, this design has some severe shortcomings which made
us choose the second alternative. The more notable ones include:

Setup Complexity Having to set up complex network topologies adds a significant burden
to the potential utility of the system. For example, if we want to explore the behaviour under

22

a network configuration of 50 nodes, recreating that setup, distributing the LLVM bitcode,
configuration files and any other necessary bits suddenly becomes a significant entry barrier
and considerably lowers the usability of the tool.

Network Topology Scalability Even more importantly, this approach suffers from serious
scaling difficulties when the network topologies become increasingly large. In the alternative
approach, the network topology has virtually zero cost – the costs are proportional to the
number of nodes being simulated.

State Access Now that the state of each process in the network is resident in a different
process address space, a single instance of KLEE does not have access to the memory contents
of the all the worlds. This ability is crucial for providing higher level correctness verification
tools, like invariants written over all the processes being simulated in a particular world.

Synchronisation Most importantly of all becomes the issue of actual synchronisation of the
simulation. Fundamentally, all nodes needs access to the global branching history and current
state of the system in order to correctly branch and preserve the semantics of isolation between
the different worlds. The core problem lies in the fact that this state is distributed across the
address spaces of multiple KLEE instances. Branching would require a global lock across all
participating processes. This incurs significant complexity and verifying the correctness of any
such architecture would not be a simple task.

Due to the drawbacks outlined above, we choose to go with a single-process design.

3.3.2 Symbolic Network Topology

We briefly touched on the subject of network topologies in the above section when it comes to
scalability. Another important facet of distributed software is that in many cases it depends
on the particular network topology that it is interacting with. For example, routing protocols
exclusively deal with issues of topologies and how to most efficiently route packets.

It is thus desirable to automatically explore the behaviour of software when run on different
topologies. One way to think about it would be to have a “symbolic” node connected to
the network which represents multiple network nodes arranged in different topologies beyond
that point. Consequently, if we run tests on such a meta-topology (which represents a set of
topologies), we can make much stronger statements about the correctness of the software with
respect to the network configurations it can handle.

Network

Virtual Net 1

Virtual Net 2

Virtual Net 3

Oracle

Figure 5: Showing a Oracle node which represents a set of network topologies.

23

While providing an incredible opportunity to prove correctness over a multitude of network
setups, there are very serious issues in realising that ability. Firstly, it should be noted that
in order for the feature to be useful, the nodes that are being simulated need to be able to
communicate with the symbolic part of the network. The question arises of how would the
node, the oracle node, which sits on the border of the symbolic and non-symbolic networks
respond to any network requests without actually simulating the different possible topologies.
If on one hand, the oracle just acted as a black hole by not replying to any network requests,
the scenario that we are testing degenerates into a network without the symbolic part. On the
other hand, the oracle node has inherent way to know how a particular network of processes
would have replied to a sequence of packets.

As a consequence, we have deemed the feature of a symbolic network topology as non-
practical at present and our system would only explore the behaviour of the software under test
under a specific topology in a single run.

3.3.3 Copy on Send Branching

Semantically, each world can be viewed as an entity that contains multiple processes, each
of which executes on a separate network node. It is crucial to preserve the semantics of world
separation when it comes to network node communication – that is, data is received by a process
in world if and only if that data would have been received if we run the software natively.

This becomes important when we consider what happens when a single process in a world
branches due to operations on symbolic values. Assume that we have three processes - A, B
and C and that C encounters a branch which can be both true and false. This means that there
are now two possible parallel worlds:

1. The world where the branch condition of the expression was true.

2. The world where the branch condition of the expression was false.

So now we have 6 processes in 2 worlds – one triplet in each. For example, we have two
copies of A – one in the world where its neighbouring node branched with a particular condition
being false and another being true. It is important to realise the need for having two semantic
copies of A – if now the C process which took the true branch decided to send a UDP packet
to A, that UDP packet should only be received in the world containing A in the same logical
world. If we instead did not treat the branching as branching all the states contained in a world,
process A could receive a network packet from C that originated by taking the true branch,
even though C took the false branch – which clearly breaks the semantics of world separation.

The naive way to preserve the semantics would be to just copy all processes in a world
whenever one of the processes branches. While technically correct, this would be not be a
smart choice. Crucially, it can be noticed that we can defer the copying only when there is
communication between the nodes that will violate the separation, which can be easily checked
for.

In order to avoid a premature optimisation, a dynamic instrumentation tool[10] was used
to compare the number of branch instructions (which are used to branch processes) versus the
number of system calls (which provides an upper bound on instructions that can trigger a branch
to preserve isolation) when running a routing daemon[6]. The average over 9 runs revealed that
the number of branch instructions is about 325 as many as system calls. Consequently, it makes
sense to implement the optimisation to only branch on demand as opposed to conservatively.

24

B1

A1

C1 B2

A2

C2

B1

A1

C1

(a) Conservative Distributed Branching

B

A1

C B

A2

C

B

A1

C

(b) Optimised Distributed Branching

Figure 6: Showing the differences between conservative and optimised branching. 6a shows
how all states get branched whenever one of them (in this case A1) needs to branch due to a
branch instruction on a symbolic value. Note that in 6a, states B1 and B2, C1 and C2 would
be identical and would not have any additional constraints added to them. On the other hand,
in 6b only state A1 is branched and B, C are shared between the distributed systems – they will
be branched on demand to preserve the isolation property whenever one of the other network
nodes tries to send them data over the network.

3.3.4 Boot-Strapping

As a consequence of our decision to use a single instance of KLEE to symbolically simulate all
processes in the network, the binary that gets simulated must contain the code for all binaries
across the network that will be simulated. That does not present a problem because most cases
fall under the following two scenarios:

1. Identical Binary

The test usually consists of running the same program on all the machines and testing
how it interacts with different copies of itself. For example, routing daemons fall into that
category.

2. Client-Server

In the majority of other cases, the relationship is a client-server one where the code being
tested resides in the server while the client is just used to initiate the test sequence. For
example, testing a Web server falls into that category where the client can consist of 40
lines of C code which just creates a GET request and sends it to the server.

In extreme cases where the binary size becomes a limiting factor in initialising the simulation,
the system can be modified to allow the loading of separate binaries. As it is highly unlikely
that we will have to deal with such cases, we chose the simple approach of linking up the final
binary which would contain the combined code of several logical programs.

Another aspect of boot-strapping the simulation is the order of initialisation. For example, if
we were simulating a client making an HTTP request to a server, we would want to the server to
be already listening for connections by the time the client makes an attempt to connect. In order
to enforce such relations, our systems provides the ability to specify the order of initialisation
of processes.

25

3.3.5 OS State & Interaction

Every program interacts with the operating system to varying degrees – networked applications
even more so. By default, KLEE routes any functions that have not been specifically modelled
to the OS. This gives rise to two problems:

• Symbolic Interaction

Given that values can now be symbolic, it is important to decide what should happen
when an OS function (a so called “external”) gets called with a symbolic value. There are
three ways to handle it:

1. Disallow the execution of external functions with symbolic values. Taking this ap-
proach can defeat the purpose of testing the software if a large proportion of function
calls are externals.

2. Concretise the value to one particular instance that satisfies the constraints and pass
it to the OS. This option can be even more dangerous than the previous one as it
can give rise to false positives. If the program reads back the values that it passed
to the OS, it will not necessarily retrieve a equal values.

3. Explicitly model such functions in a way that preserves their semantics.

We have opted for a combination of the first and last option – we disallow the execution
of external functions that are deemed unsafe and explicitly model all essential functions
that are necessary for the operation of distributed programs.

• Isolation

Calling externals which operate on shared data kept at the OS level can lead to unexpected
problems. Our system is simulating the execution multiple processes on different network
nodes and we need to ensure that any interaction with externals cannot affect any of the
other processes.

For example, it is unsafe to redirect the usage of chdir()2 to the OS – not only will it
change the current working directory for all worlds that are being simulated, in addition
it will change the working directory for KLEE itself.

In order to properly handle such cases, we need to model and provide isolation by storing
such state ourselves on a per simulated-process basis.

3.3.6 Scheduling

In its original form, KLEE simulates the execution of a single process but with the twist that it
explores multiple possible execution paths. This means that at any given point in time, KLEE
has to decide which particular execution path to follow. The scheduler (or “searcher” in KLEE
parlance) is responsible for that role.

By modelling the simulation of multiple processes running on different network nodes and by
providing the ability to communicate using the POSIX sockets API, our system introduces the
need for changes to the scheduler in order to implement the semantics of the relevant functions.

2Changes the working directory of the calling process.

26

Blocking By default, reading from the network is a blocking operation. This implies that if
a process tries to read() from a socket and there is no data, this particular process becomes
blocked and ineligible for selection to be run. In addition to being blocked, a process can also
set a timeout after which it becomes unblocked – for example, the select() function accepts
a timeout and returns 0 if the timeout expires with no activity on a set of sockets.

This creates an additional level of complexity in the scheduler because it does not have the
freedom to choose any arbitrary process to run next (while that was indeed the case in KLEE
in its original form).

Interleaving Of even greater importance is the behaviour of the scheduler when it operates
at the scale of a world. Assume that the scheduler has selected one of the worlds and now needs
to choose which process within that world to run. The core issue is that there is no “correct”
choice – the scheduler is essentially taking the role of deciding how the processes running on
multiple network nodes are to be interleaved.

The importance of this issue is that the behaviour of networked software can depend on the
sequence of packets it receives. As a simple example, assume we have a server that arbitrates
the access to a shared resource on a first come, first served basis. Furthermore, two clients
want to request the resource and are just about to send the network packet requesting the
resource. The outcome of who gets the token is non-deterministic if we run the programs
natively – it will at least depend on factors like network congestion and delay. Our system will
non-deterministically pick one of the clients and we will not explore all possible interleaving as
that will create a significant increase in possible states.

Our Design From a very high level, we can view the state of all worlds as a tree where
the leaves contain the worlds and the structure of the tree reflects the branching history. In
addition, each node in the tree knows whether it is blocked or unblocked – for the leaves, it
would be equal to whether there is at least one state that is runnable. For an intermediate
node, the node is unblocked if and only if either the left or the right node is unblocked.

This design allows us to choose a state by starting at the top of tree and traversing the tree
down until we reach a leaf (an invariant maintained throughout the execution is that a node is
a leaf if and only if it contains at least one process) – there is no need to backtrack by getting
stuck if we reach a world which is blocked. In addition, it allows us to instantly determine
whether there are any unblocked states at all across all worlds by just expecting the root of the
tree.

B1A1 B2A1 B1A2 B2A2

World 1 World 2 World 3 World 4

B1A1

B1A1 B1A2

Figure 7: Showing a tree composed of 4 worlds. Initially, there were two worlds A1 and B1.
Firstly, A1 branched and later B1. Note that we only have 2 processes even though there are
4 worlds – this is because no communication has taken place and we branch on demand as
explained before.

27

When it comes down to actually choosing which state to run, we follow a two stage process:

1. World Choice

In the first stage, we choose a world. We do this by following a random path starting
at the root of the world tree. At each node where both paths can be followed, the set
of worlds in each subtree has equal probability of being selected. We inherit the same
properties as in the original implementation of KLEE[2], namely:

• It favours worlds that are higher in tree – i.e., the ones that have less constraints and
more freedom to explore different code paths.

• It avoids starvation in cases where a tight loop in some world is creating an excessive
amount of processes by branching.

2. Process Choice

Once a world has been chosen, we need to choose a specific process within that world. We
do that in a round-robin fashion making sure we skip any blocked processes.

3.3.7 Deadlock Detection

Another feature of our system that is closely related to scheduling is the ability to detect a
deadlocked world. When a process becomes blocked waiting for network events, it can either
specify a timeout or it can wait infinitely. We use the term “stalled” to indicate a process that
has blocked and does not have a timeout.

Once a process becomes stalled, it can only become unblocked if and only if it receives a
network packet from another process in the same world. Deadlock detection uses this fact to
detect the case when all processes in a particular world have “stalled” – as all of them are waiting
for network packets from each other but none of them can send any before being unblocked,
the whole world is deadlocked and can be terminated to save resources. Deadlocks can arise
in normal testing and do not always indicate faults in the implementation. For example, if we
were to test how a server handles a single HTTP GET request, after the client process exits,
the system will be deadlocked as the server usually runs in an infinite loop waiting for more
connections.

B

A

C

Figure 8: A deadlocked world – A is waiting for network events from B, B is waiting for events
from C and C is waiting for events from A.

3.3.8 Closed World

Another design choice that we have made was to model our system as a closed world. We do
not support and model any interaction with entities that are not being simulated. Having the
ability to interact with any parts outside of the simulated world raises multiple issues, include
but not limited to:

28

Symbolic Data In order to preserve the semantics of symbolic execution, the external entities
would need to have the ability to accept symbolic data. This precludes the usage of systems
without any modifications and it can be argued that extending KLEE itself might be a better
option in such scenarios.

Shared Entities Unless the state of any shared external entities is read-only, additional
support would need to be added to correctly handle any communication such that it preserves
the semantics of world separation.

As we did not encounter any cases where interaction with the outside “world” was abso-
lutely necessary during the the preliminary stages of this project, we deemed the closed world
assumption to be a practical one that should not affect the utility of the system.

3.4 Networking

The networking subsystem lies at the heart of our extensions. Its aim is to provide an efficient
internal mechanism (via a set of functions) that can be used to implement the POSIX sockets
API. In terms of extending the current system, there are two types of additions that are required
to enable inter-process communication of simulated processes:

1. Internal

Processes have no access or awareness of any others. We need to expose an API which
provides the ability to exchange information with the other network nodes. KLEE has a
mechanism to allow “special function” which are implemented within KLEE itself. For
example, that is how primitives, such as marking data as symbolic, are implemented.
Only KLEE has access to the address space of all processes, so we have added primitives
to allow exchange of data within worlds.

2. Runtime

The runtime implementation gets compiled to LLVM bitcode and is linked during initial-
isation with the rest of the program. We have to implement the POSIX sockets APIs in
the runtime by using the “special functions” that we have exposed.

A1

A2

A3

KLEE

Native Execution Runtime (Symbolic)

Figure 9: Showing the distinction between the address spaces of the simulated processes and
the simulator. Note that our system has full access to the internal address spaces of A1, A2 and
A3 while those virtual processes are do not have the ability to access any other address spaces.

29

There is a fine line between choosing which parts should go into the runtime and which
ones should go into the system itself. It usually depends on the functionality that is being
implemented. The benefits of each approach include:

Internal Only the system itself has a complete global picture of all the worlds and processes
they contain. If there is a need to access that information, the only option would be to imple-
ment it internally. Another benefit of internal implementations is that they run natively which
provides significant performance advantages (in general, code runs between 10-100 times slower
when interpreted).

Runtime Implementing parts in the runtime provides benefits when it comes to using sym-
bolic data. Symbolic values are essentially first-class citizens, as the code does not differentiate
whether something is symbolic or not – it is just plain C code. In addition, it makes it easy
to implement any behaviours that are related to branching or deal with symbolic data. For
example, if we want to explore two code-paths at the same time, all we have to do is mark a
variable as symbolic and write an if statement whose condition tests whether the variable is
equal to some particular value.

The networking subsystem can be subdivided into two separate parts – one that deals with
transferring data between processing and the other is concerned with defining the topology of
the world.

3.4.1 Event System

Our design includes an extensible way to transfer “events” between states. An “event” is the
most important abstraction and underlies the basis for all inter-process communication. An
“event” has several properties:

• Type

Each event has a type which allows any receiver to determine whats actions to take. There
are currently 4 types in use: data, request, reply and close used to support data
transfer and TCP connection establishment & termination.

• Identifier

Each event features a unique identifier. The reason for including identifiers to be able to
detect and correctly handle duplicate events.

• Source & Destination

Each event has a source and destination pairs of IPv4 address and port.

• Request & Connection Identifiers

Those two identifiers are optional and can be used to identify long-lasting (in terms of
event sequences) “conversations” between processes.

• Data

Optionally, each event can be associated with opaque data – a sequence of bytes (which
can be symbolic). It is very important to note when any symbolic data is transferred, we
transfer all the constraints that it is associated with.

Coupled with the notion of an event, our system defines a set of internal functions available
to processes to interact with other processes via events. Those functions can be divided into
two categories:

30

1. “Inbox” Inspection

Each process has an “inbox” that collects and stores pending events. There are two very
important functions that allow the inspection of the inbox:

(a) Pending Events

A process can check whether there are any pending events that match certain criteria.
This functionality is essential as it allows the implementation of non-blocking POSIX
socket APIs.

(b) Event Blocking

Even more importantly, there is a function that allows the calling process to indicate
that it should become blocked unless certain events are contained in its “inbox”,
optionally specifying a timeout. This is the primitive that is used to implement all
the blocking behaviour in our system. For example, the primitive can be used to
implement a blocking recv(), select() and even sleep().

2. Event Transfer

In addition to the “inbox” inspection functions, a set of functions that enable the retrieval,
removal and sending of events is provided. Events which have been sent reside in the
address space of our system until they are retrieved – the “inbox” represents events that
are buffered by the OS and only get moved into the address space of processes by using
the retrieval functions.

A1

A2

A3

Network Inboxes Virtual Processes

Figure 10: Showing the network inboxes of each virtual process. Note that the inboxes reside
in the address space of the system. In this figure, A2 has sent two events – one to A1 and one
to A3, A1 has sent an event to A2 and A3 sent an event to A1.

One of the reasons we have chosen an event-based systems is due to the flexibility and
extensibility it provides. The event based system is general enough such that it is trivial to
provide implementations of other interprocess primitives. One such example would be the
implementation of process signals – a signal can just be implemented as a new type of event
which has its IP source and destination zeroed out, the request identifier can be used to carry
the process ID of the recipient and the connection identifier can be used to store the signal.

3.4.2 Network Topology

Providing the ability to send and receive events leaves one important detailed completely un-
specified – the routing of the events from the source to the destination.

31

Our system exposes another set of “special” functions that can be used to configure the
network topology. The advantage of exposing the functionality to the process under simulation
as a set of functions means that the network topology can be configured during initialisation
and actually be dependent on arguments passed to the program. Our model is identical to a
configuring a real system – we provide five primitives that are used to configure all aspects:

1. Networks

Ability to add named networks which this can be viewed as defining a physical LAN which
nodes can be attached to.

2. Routers

Ability to create routers which are virtual entities that allow traffic to flow between net-
works.

3. Interfaces

Ability to add network interfaces to routers or to the network node simulating the current
calling process.

4. Addresses

Ability to assign IPv4 addresses (together with a subnet mask) to network interfaces.

5. Routes

Ability to specify the routes which the virtualised OS should use to route packets. Routes
can be specified for both virtualised routers and for the network node that is running the
calling process.

Our system provides virtualised routers whose only role is to forward packets to the des-
tination processes that are being simulated – the routers themselves are not simulated in the
same way as the processes under testing.

The advantage of following the networking model as used by real system is that it allows a
transparent mapping between the models. This property will later be exploited by other parts
of our system.

A3

A1A2

Figure 11: Showing a network composed of two routers and three processes. There are three
events being transmitted.

32

3.5 Filesystem

Most distributed software relies on the filesystem for various reasons, most commonly to read
configuration files or to store results from its computation. Thus it is essential that a rudimen-
tary filesystem is provided that respects the semantics of the system calls that interact with it.
The design of any such filesystem should favour efficiency and speed for the common cases over
completeness of support of POSIX functions.

Our filesystem can be seen as dual system which supports fast access to Operating System-
backed files and also virtual (“symbolic”) files. It has the ability to correctly handle the seman-
tics of all commonly used filesystem functions – for example, creation, reading and writing to
files are all supported. When we refer to files, we also implicitly include directories as both are
handled in a uniform way.

When a request is made to open a file, what actions are taken depend on several factors
but primarily it depends on whether the filename is symbolic or concrete. If the filename is
symbolic, the request can be considered to a simultaneous request for multiple files. There are
two ways in which we can handle symbolic path names:

1. State Exploration

We can try to explore all possible combinations that the pathname can take, branch for
each one and re-route them to the operating system. While a simple solution this would
have terrible performance and create an explosion of states, most of which would end
being non-existent.

2. Symbolic Filesystem Subset

Another approach would be to have a very small set of “symbolic” (in memory) files that
is used to represent the contents of the whole filesystem when the filename is symbolic –
in a way, it provides an symbolic-reality filesystem. The advantages of this approach is
that it is efficient in terms of branching as the symbolic pathname will only be compared
against a very small number of files. Even more importantly, the “symbolic” filesystem
can be chosen such that it covers all “interesting” cases, such as empty files, regular files
and directories, as well as a non-existent files.

The following flow chart provides a high level overview of the logic used when opening files.

33

YES

YES

Success

Failure NO Found Match?

Look up in
symbolic store

NO

Create in-memory
virtual file

SuccessFailure

Has Creation Flag?

NO

YES
Indicate file data
backed by OS

Success

Open File at
Path

Pathname Symbolic?

Exists on OS
filesystem?

NO

YES

Figure 12: Showing the high-level logic when opening a file.

3.5.1 OS-backed Files

One of the most common cases that would arise when testing a programs would be that of
reading configuration files from the filesystem, opening log files and outputting data to the
standard streams (stdin and stdout). By design, our files can be backed by the OS which
provides enormous savings versus having to store the data in memory.

Writing to OS-backed Files The issue arrises about how our system should handle writes
to files that are backed by the real filesystem. We cannot just relay any writes because that will
inadvertently affect the other processes that are being simulated. There are several approaches
that can be taken.

34

In-Memory When a request is made to write to a file, we could read the whole file in memory
and then perform the writes in memory – this will not disrupt any other processes as we have
turned the shared file into a private memory region. The biggest disadvantage of this approach
is the enormous memory penalty for large files.

Versioned A more efficient approach would be to have a versioned file system whereby
read()s and write()s go via a special function API which is provided by our system that does
the versioning efficiently on a per process bases. This solution easily lends itself to optimisations
such as copy-on-write.

Restrict A further approach would to be put a restriction such that OS-backed files cannot
be written to.

As we guided the development of our system by the needs that arose in order to be able to
run production software, we choose the last option – currently, writing to files that are backed
by the OS is unsupported.

3.5.2 Extra Features

Our filesystem also handles some special cases that arise in practice often enough to warrant
special handling.

Standard Streams There is special support for stdout, stderr and stdin such that all
operations correctly work on them.

/dev/null One common thing that happens in web servers is the redirection of various streams
to /dev/null. Support for /dev/null is present with all the correct semantics.

Finally, we also have the ability to persist any in-memory files at the end of the run to disk
for further investigation of the behaviour of the software.

3.6 Summary

In this chapter, we looked at the high-level design of our system. We discussed limitations to the
set of network topologies that can be tested, provided description of how we can bootstrap the
simulation process using existing infrastructure and explored the responsibilities & requirements
placed on the process scheduler. We provided an overview of a event-based system which is
general enough to allow the implementation of the POSIX networking APIs. Finally, we looked
at the requirements for our filesystem and outlined various approaches on how we can satisfy
them.

35

4 Replay Framework

Finding issues using our system is only half the story. The first step in fixing any bugs requires
the ability to reproduce the problem. In its original form, KLEE generates “test cases” when
a particular execution path terminates. These files provide the information that can make the
software follow the exact same code paths that it did while being simulated. It achieves that
by instantiating any symbolic variables to concrete values that satisfy the constraints for that
execution sequence.

There are two reasons why the existing replay system does not work when we run distributed
software:

1. Network Configuration

The network topology used by the simulation would rarely coincide with the network
topology of the host that is running the simulation.

2. Initialisation Sequence

The order of initialisation of the network nodes usually plays an important role in recre-
ating the issue.

We resolved the two issues outlined above by re-using the existing test system while also
including more data in a separate test file. We refer to the original test files as ktests while the
additional tests generated by our system as dtests.

In order to reproduce an issue found by our system, we have to know two things:

1. Which processes (and consequently which ktests) were part of the world where the issue
appeared.

2. What was the network configuration and initialisation order of the processes within the
world.

Both of the above are recorded in the new dtest files – in essence, a dtest file composes
(by referencing) multiple ktest files while additionally including information about the network
configuration and initialisation order. An example dtest file is shown below.

Listing 4: dtest test case

1 <?xml version="1.0" encoding="UTF-8"?>
2 <test>
3 <network name="net0"/>
4 <network name="net1"/>
5 <router hostname="router">
6 <interface identifier="1" network="net0">
7 <address ip="10.0.0.2" mask="24" primary="true"/>
8 </interface>
9 <interface identifier="2" network="net1">

10 <address ip="10.0.1.2" mask="24" primary="false"/>
11 </interface>
12 </router>
13 <node filename="test000002.ktest" hostname="client" filesystem="" server="

false" sequence="0">
14 <interface identifier="1" network="net1">
15 <address ip="10.0.1.1" mask="24" primary="true"/>
16 </interface>
17 <route destination="null" mask="0" gateway="10.0.1.2"/>
18 </node>

36

19 <node filename="test000003.ktest" hostname="server" filesystem="" server="true
" sequence="1">

20 <interface identifier="1" network="net0">
21 <address ip="10.0.0.1" mask="24" primary="true"/>
22 </interface>
23 <route destination="null" mask="0" gateway="10.0.0.2"/>
24 </node>
25 </test>

The dtest file contains all the information to completely reproduce any issues found. Fi-
nally, we use VNUML[11] to create a virtualised network of systems that exactly replicates
the configuration specified in the dtest file. We have written a tool that generates a VNUML
configuration from a dtest file.

37

5 Failure Model

When testing distributed software, low probability events are usually very hard to simulate and
thus execution paths which handle exceptional errors can end up being untested. Consequently,
it is very important to non-deterministically fail system calls, like read(), write(), etc., in
order to achieve higher code coverage. As demonstrated by both KleeNet[13] and MoDist[15],
once a very small number of such failures has been injected, any additional ones do not lead to
exposing any additional distributed behaviour.

We provide four ways to automatically inject various events, in hopes of steering the system
under test into unexplored code paths.

5.1 Packet Loss & Re-Ordering

Communication over UDP does not guarantee reliability, which makes it possible to lose packets
and re-order them while still preserving the semantics of communication over UDP sockets. Our
system has the ability to define the maximum number of packets that were are lost along any
execution path. In addition, UDP packets can be dynamically re-ordered at runtime – there
are two parameters that control re-ordering behaviour: the number of times packets will be
re-ordered and the re-order window size. The window size specifies how many packets to wait
for and then to perform all possible re-ordering on that sequence. It should be noted that for
a window size of n, there are n! possible re-orderings which makes large reorder window sizes
impractical.

(a) Packet Loss (b) Packet Re-ordering

Figure 13: 13a shows how our system explores both possible outcomes when a packet is sent
– both being received and dropped. In 13b, we explore all possible re-ordering combinations,
which in this case is 2.

5.2 Symbolic Automark

Another feature of our system is the ability to automatically mark parts of the data sent across
the network as symbolic. The number of times this is performed, the amount of bytes and the
offset within the data can be specified. This ability can be viewed in two ways: either as an
easy way to mark data as symbolic without performing any code changes or as a mechanism to
explore how the software handles arbitrary data (e.g., malicious clients).

38

H e l l o

? ? ? l o

Figure 14: The code sends the bytes Hello while our system marks the first 3 bytes as symbolic
and the recipient will transparently receive the symbolic data.

5.3 System Call Failures

Finally, we can choose to fail common system calls, such as read(), write(), accept(),
etc. The user can specify the maximum number of failures along any single execution path.

39

6 Distributed Invariants

As previously seen in KleeNet[13] and in MoDist[15], distributed invariants can find bugs at
the protocol level that cannot be caught otherwise. It is entirely possible that programs can
achieve 100% code coverage but still have bugs which result from untested node interaction and
could either be caused by faulty protocol implementation or due to the protocol being unsound
in itself. Checking the distributed state across all the network nodes can reveal such situations.
The specification of distributed invariants has several important aspects, outlined below.

Syntax The invariants have to be expressed in some form and there are two main choices:
either a domain specific language (DSL) or the native language of the software under test. The
use of a domain specific language would make it easier to express certain properties while on
the other hand it would require the infrastructure for its interpretation.

Instead, if the invariants are expressed as functions in the language of the target software,
they could be compiled to LLVM bitcode and then interpreted at runtime. This will provide the
freedom to use the target system’s internal APIs to define arbitrarily complex assertions. One
necessary change would be to include functions that can used to return handles to the nodes
that are being tested, so that the invariant checking code can iterate over them and execute
functions in the processes’ contexts.

Data Access The invariants themselves need to access state from each process in a world. If
a DSL is used, there needs to a way to specify how the memory / state is “seen” from the within
the language. On the other hand, if the native language is used as a syntax, things become a
little bit easier as we can just re-use the semantics defined for that language.

In both cases we would still need to define the context within which the invariants are
evaluated.

Evaluation Point The evaluation point of the distributed invariants has to be well defined
in order to avoid false positives. For example, loop invariants only hold at the loop start point.
Ideally, programs should have the ability to specify at which points the assertions should hold.

6.1 Minvariant

Based on the advantages of each approach, we choose to design our own domain-specific lan-
guage. Two of the main reasons included:

1. Expressive Power

DSLs are custom designed to perfectly fit their target usage. In turn, this implies that by
design they will have a very high expressive power which would result in ease of usage.

2. Extensibility

Designing a custom language gives us the freedom to extend it without worrying about
breaking any backwards compatibility.

While running preliminary tests of our system, all the scenarios that we encountered where
we could apply invariants could be seen as a two stage process:

1. Collect In the collect stage, opaque data (sequences of bytes) is collected from each
process in a world.

40

2. Operate In the operate stage, the set of sequences of bytes are being used to return a
boolean value.

One of the most important aspects of our design is how processes expose data. Firstly, we
need to define three primitives:

• Node – a node stands for a process running on a simulated network node. It is represented
by a string.

• State – a state is an abstraction of a particular user-defined internal state of their system.
It is represented by a integer.

• Key – a key is used in the same way as in a dictionary / map, as an index. It is represented
by string.

In our design, nodes can expose data for a particular combination of state and key. The
state is usually meant to be used to distinguish between different phases a program goes through
and the key is used as an index to locate the data for a particular key. A pair of state and key
can be thought of as a unique way to identify a sequence of bytes within a node.

B

A

C

1

sent

recv

Data 1

Data 2

2

sent

recv

Data 3

Data 4

Figure 15: Showing data exposed by process A for invariant checking. For example, Data 2
corresponds to using a state value of 1 and key recv. Note that the the data exists outside
its address space once exposed. Invariant data is shown in green and can be reached by a
“composite key” (shown in blue) which is a combination of state and key.

Before showing how the collect and operate stages are semantically defined, we present a
Minvariant program that checks whether all participants in a 2-Phase Commit have reached
the same decision.

41

Listing 5: Checking for decision consistency in 2PC.

1 invariant decisionConsistency(data[] d) : nodes, states, keys {
2 return d.equalElements();
3 }
4
5 string[] nodes() {
6 return sys.nodes();
7 }
8
9 int[] states(string node) {

10 return int[1] ;
11 }
12
13 string[] keys(string node, int state) {
14 return string["decision"];
15 }

The key components in this Minvariant program are the three functions (nodes, states,
keys) and the invariant decisionConsistency. It should be noted that each invariant
accepts an array of data (representing opaque sequences of bytes) and in its definition needs to
specify 3 functions – one which returns an array of nodes, another which given a node returns
an array of states and finally a function that given a node and a state, returns a set of keys.

In order to evaluate the invariant decisionConsistency, our system performs the fol-
lowing steps:

1. It evaluates the nodes function which returns an array of nodes. Note that sys is a
special global object and sys.nodes() returns an array of all nodes in the current
world.

2. For each of the nodes that were returned, it will call the states function, passing the
current state. This will return an array of states.

3. For each of the states returned in the step above, the function keys will be executed
collecting the results.

4. At this point, our system will have a list of triplets – node, state and key which should
be used to collect the data which has been previously exposed by processes.

5. After collecting all data, the invariant decisionConsistency is evaluated by passing
the collected sequences of bytes. In this case, it checks whether all the sequences of bytes
are equal (i.e., all decisions are the same).

6. If the return value of the invariant is false, then it is deemed violated.

One of the important features of Minvariant is that the collect stage is defined as a set of
functions (which can be of arbitrary complexity) while the operate stage is the invariant code,
which again can be of arbitrary complexity. Notably, functions can be easily re-used when
defining multiple invariants.

42

7 Implementation

In this section, we provide implementation-specific details about the various subsystems that
comprise our software. Our system’s architecture is shown again in figure 16.

Filesystem

Replay

World Model

Failure Model

Invariants

System Runtime

Networking

Figure 16: Showing the high-level view of the extensions provided by our system. Networking
and Invariants require changes on both “sides” – system and runtime.

The section is split into two parts, reflecting the changes that were made to the system and
the runtime. One very important aspect of this architecture is that the runtime is executed
symbolically which gives it the ability to branch and use symbolic values transparently. The
specifics of uninteresting or trivial parts have been left out.

System Changes These changes were modifications made to KLEE itself needed to provide
the infrastructure necessary to implement several primitives to allow for communication between
the simulated processes. In addition, the changes in the system were necessary to extend the
world model to accommodate the testing of distributed software. From figure 16, Networking
and Invariants span both logical components and shows that those features require special
primitives in order to be implemented.

Runtime Changes The runtime is composed of C implementations of the POSIX filesystem
and socket APIs and gets compiled to LLVM bitcode. During initialisation, the runtime is
dynamically linked with the software under test so that any system calls get re-routed to our
custom implementations. As shown by figure 16, the Filesystem and Failure Model do
not require any special support while Networking and Invariants require a certain set of
primitives.

7.1 Overview

First and foremost, we provide details about the modifications that were necessary to introduce a
multi-world model (section 7.2.2) that allows us to represent the execution of multiple processes
across a network. We also cover the bootstrap (section 7.2.3) process which re-uses pre-existing
infrastructure to provide a simple solution. Afterwards, we take a look into the specifics of how

43

networking is implemented on top of a general event system (section 7.2.4). Crucially, in section
7.2.5, we illustrate the operation of the algorithm that preserves the semantics of world isolation
when processes exchange events. In section 7.2.6, we show the additional imposed restrictions
on the scheduler as a result of our modifications and how we provided a very fast solution. 7.2.7
covers the model and implementation of the invariants framework while 7.2.8 briefly describes
the operation of the replay framework.

After covering the system changes, we move on to the runtime extensions. 7.3.1 provides
details on the primitives provided by by the system side to enable implementation of the
networking APIs, which itself is looked at in section 7.3.2. Section 7.3.3 explains how our
filesystem works while section 7.3.4 provides a deeper look into how we inject failures.

From the onset of the project, it was crucial for all of our modifications to maintain full
backwards compatibility with the existing system for two reasons.

Complexity KLEE, together with LLVM, are very large and complex pieces of software. They
deal with intricate details that might not be apparent by glancing over the code without having
intimate knowledge of the problems being addressed. If we decided to not retain backwards
compatibility by making fundamental changes, we would have had lower confidence of the
correctness of our system.

Test Suite Furthermore, retaining backwards compatibility allows us to re-use the already
existing test suite to check for any potential breakages. This raises our confidence in the
correctness of our implementation

All of the added features of our system are enabled by adding command-line arguments when
starting the simulation, with the two most important ones being --distributed-mode and
--distrib-runtime.

7.2 System

We made two important changes to KLEE so that it can handle the simulation of networked
software:

1. Process Model

We modified KLEE so that its model represents a set of parallel worlds, each of which
contains multiple network nodes executing a single process.

2. Event System

In addition, we added primitives to allow for inter-node communication within each world.

Before we describe the modification, we take a look at the existing structure.

7.2.1 Existing Model

One of the most important classes in KLEE is ExecutionState which represents the state
of a process being executed. Initially, when KLEE starts running the software under test, there
is a single execution state. During the simulation, when a branch instruction whose condition
can be both true and false, the current ExecutionState being run is “branched” (two copies
created) and each copy is modified by adding its respective constraint – for the execution path
taking the true branch, the constraint would be that the branch condition evaluated to true
(and analogously for the false copy).

44

During the branching process, KLEE keeps a record of the branching history as a tree where
all intermediate nodes contain no data and the leaves contain references to a ExecutionState.
The reason why the tree represents the branching history is that on every branch, the left subtree
contains the state which has the constraint that the branch condition is false while the right
that it is true. This provides the “decision” history for the nth symbolic branch.

ExecutionState is composed of the following important sub-components:

• Program Counters Both the current program counter and the previous program counter
are recorded.

• Stack The current execution stack is recorded as a vector of stack frames. A stack frame
keeps track of the caller, the function being executed, local variables and any passed
arguments.

• Constraints Each state has a constraints manager which efficiently keeps track of all the
constraints applicable to the state.

• Address Space The address space of the state maintains all information pertinent to
modelling its memory. It maintains a mapping of “memory objects” to their particular
values. A “memory object” represents a specific allocation point (for example, int a;).

Figure 17: Showing the class diagram for ExecutionState and the most important related classes.

7.2.2 Modified Model

The first and most important change was to modify the model to represent the execution of
multiple processes in a world. We added two important structures to KLEE

• World

A world is represented by the DistributedSystem class. It has three responsibilities:
to “bundle” up a set of execution states, to manage the information relevant to generating
distributed test cases and to manage the data exposed for invariant checking.

45

• Distributed Tree

The distributed tree (implemented by DTree) is a dual of the ExecutionState tree
(implemented by PTree) – it keeps track of the worlds’ branching behaviour during
execution.

Figure 18: Showing the class diagram for DistributedSystem.

C

B

A1 A2

(a) Process Tree

B

A1

C B

A2

C

(b) Distributed Tree

Figure 19: Showing an instance diagram for processes from two different perspectives. 19a
shows how the processes in the way they are organised as a process tree ignoring the modelling
of worlds. In 19b, processes are grouped into worlds.

It is of great importance to note the relationship between the DistributedSystem and
ExecutionState classes – many-to-many. It is obvious why a world can contain many pro-
cesses, as this was one of the aims of the new model. The reason why a process (ExecutionState)
can belong to multiple worlds is due to our on-demand copy strategy – we only branch pro-
cesses on network transfer whenever absolutely necessary to preserve the semantics of world

46

separation.

7.2.3 Bootstrapping

When it comes to starting a simulation, the natural question arises how the initial world gets
initialised. This is equivalent to asking when and how the initial “bundling” of states into a
DistributedSystem happens.

When running under distributed mode (i.e., our system is trying to simulate distributed
software), it is initially in a state which can be described as waiting to reach point the point of
initial “bundling” (that is, creation of the initial world). While in this state, most of the code
related to handling distributed aspects does not get executed. By definition, the point of initial
world creation is reached when all existing processes are “network-ready”. A process becomes
“network-ready” by executing the function klee_net_host_setup. Crucially, “network-
ready” processes are not selected by the scheduler during the initialisation stage. Usually, a
wrapper main() functions acts as the entry point for symbolic execution. Furthermore, a
variable is made symbolic and branched on it, thus creating several processes where each will
represent a process running on a different network node. The code below demonstrates how to
bootstrap a client and a server process.

Listing 6: Bootstrapping the initial world.

1 int main(int argc, char* argv[]) {
2 klee_net_add_network("net0");
3
4 int machine = 0;
5 klee_make_symbolic(&machine, sizeof(machine), "machine");
6
7 if(machine == 1) {
8 uint32_t ip = klee_net_make_ipv4(10,0,0,1);
9 klee_net_add_interface(1, "net0", NULL);

10 klee_net_add_ipv4_address(ip, 0, 1, 1, NULL);
11 klee_net_host_setup("server", 1, 1);
12 return main_server();
13 }
14
15 uint32_t ip = klee_net_make_ipv4(10,0,0,2);
16 klee_net_add_interface(1, "net0", NULL);
17 klee_net_add_ipv4_address(ip, 0, 1, 1, NULL);
18 klee_net_host_setup("client", 0, 0);
19 return main_client();
20 }

Our system will execute the program as follows:

1. Execution starts at line 3. This function will add a network named “net0” which network
nodes can attach themselves to. This network name would be used as an argument in
later functions. Only networks added by calling klee_net_add_network can be used
when attaching interfaces to networks. If a network has not been added previously, the
functions will return an error code.

2. At line 6, the variable machine is marked as symbolic thus making it possible for it to take
any value in the range of int. It is important to note that if the variable is compared
against a value, both outcomes are possible (equal and non-equal), thus creating two
branches (or processes).

47

3. At line 7, the execution needs to decide which path to take – since the variable machine
can take any value, the system will branch the current process into two and explore both
paths (while adding the constraint machine == 1 to one process and machine != 1
to the other).

4. Assume that the scheduler always picks the process with the constraint machine == 1.
Lines 8, 9 and 10 are executed which set up the network interface on the calling process.
The effect of the functions is that the calling process will be connected to the network
net0 with an IPv4 address of 10.0.0.1 and the default subnet mask of 255.255.255.0.

5. After executing line 12, the scheduler will no longer pick the process that went down that
path. The function call will also set the hostname of the calling process to server and
the second argument indicates that the process needs to be executed until it blocks –
essentially, defining our initialisation order.

As there is only one other process left (as the one that blocked at line 12 is now ex-
cluded from being considered), the scheduler will start picking the process which took the
machine != 1 path.

6. Lines 16, 17 and 18 get executed which set up the network interface for the second process
– it will be connected to the same network as the server process but with an IPv4 address
of 10.0.0.2 (same subnet mask of 255.255.255.0).

7. After line 20 is executed, the system is in a state where all existing processes are “network-
ready”. At this point, a world is created (DistributedSystem) and all states added
to it. This concludes the bootstrapping phase. Figure 20 shows how the world is seen by
our system at this point.

serverclient

10.0.0.2/24

10.0.0.1/24

net0

World 1

Figure 20: Showing the initial world after bootstrap.

7.2.4 Event System

The event system is responsible for all exchanges of events between processes. It is implemented
as an extension of the tool itself as it is the only place that has global knowledge about all pro-
cesses. In order to make it possible to transfer events, each process (ExecutionState class) is
extended to contain a network “inbox” (NetworkStack class). Its two primary responsibilities
are to manage the network configuration of the current process and the management of events
that it receives.

48

Event When our system deals with events internally, it uses the NetworkEvent class. A
NetworkEvent class represents the composition of a primitive event and the symbolic data
associated with it. A primitive event is defined as:

Listing 7: Primitive event definition.

1 enum net_event_type {
2 net_event_type_none = (0),
3 net_event_type_data = (1 << 0), // data packet
4 net_event_type_request = (1 << 1), // request for connection
5 net_event_type_reply = (1 << 2), // reply to a request
6 net_event_type_close = (1 << 3) // connection closed
7 };
8
9 struct net_event {

10 uint16_t type;
11 uint64_t identifier;
12 uint32_t from_ip, to_ip;
13 uint16_t from_port, to_port;
14 uint32_t req_id;
15 uint32_t con_id;
16 } __attribute__ ((__packed__));

There are several important details to notice. The values for the type of a primitive event
can be used as a bit-mask due to their definition. This allows us to re-use the net_event
structure when searching for events by specifying to match a set of types. For example, if a
process wants to wait for either data packets or for a signal that the connection has closed, it
can specify a type of
(net_event_type_data|net_event_type_close).

Furthermore, note that each event has a 64bit unique identifier – this is so that processes
can detect duplicates if needed. The req_id and con_id fields serve the role of keeping track
of “conversations”, that is, sequences of related events. For example, when a process tries to
connect to a server via connect(), it will set req_id not a non-zero value and wait for replies
(of type net_event_type_reply) only to that req_id.

Data Transfer The networking system is responsible for the transfer of data between pro-
cesses. We can see from the definition of a primitive network event that it has no reference to any
data. The reason for that is that a primitive event represents a kind of “signal”. When processes
send primitive events, they can pass a pointer to an opaque sequence of data which will internally
get associated with the event (on the system side in the NetworkEvent class). Processes use
the function klee_net_event_put(net_event* inEvent, uint8_t* data) to send
data across the network. This is a “special” that gets handled by the system as follows:

1. The primitive event is checked for validity (i.e., it must contain a well-known type, etc.).

2. If data is not a NULL pointer, it is looked up in the address space of the calling process.
The value of memory objects is seen internally as instances of the ObjectState class.
If the pointer points to a valid ObjectState, it is cloned so that any modifications to it
at later times should not affect the recipient of the data (essentially, we are deep-copying
the memory contents).

3. The set of destination processes is computed. If necessary to preserve the semantics of
world separation, processes are cloned.

49

4. The event (represented by the NetworkEvent class) is added to the network inbox of
each destination.

One subtlety during the second step is that it requires extra care if the transfer involves any
symbolic data. One of the fundamental building blocks of the memory model is the “array”.
Each “array” has a unique global identifier and can be one of the following:

• Concrete

A concrete “array” is composed of a sequence of constant expressions (ConstantExpr
class). In turn, a ConstantExpr represents a constant expression – an arbitrary precision
integer (backed by the LLVM class APInt).

• Symbolic

A symbolic array is not composed of any sub-values. In essence, an instance of a symbolic
array is used as a unique in-memory identifier for that array. The array is subsequently
used in expressions which are added as constraints to the process. For example, an “array”
can be created with the identifier arr27 and we can add a constraint that says “the value
at index 0 in arr27 is not equal to 3”.

If an ObjectState instance contains symbolic data, it will contain reference to “arrays”
that are symbolic. As a consequence, if we just cloned the ObjectState when symbolic data
is present, the recipient process would receive the data unconstrained. In order to correctly
transfer the data that the sender we need to:

1. Compute the set of symbolic arrays that are referenced by the ObjectState instance.

2. Compute the transitive closure of all constraints referring to the set of symbolic arrays.

3. Add the constraints to the destination state.

Listing 8 shows the code that computes the transitive closure of the constraints that refer to
symbolic arrays in the transferred data. Line 1 declares the set of constraints should be added
to the destination state. The if statement on line 2 is needed because some events do not
carry data in which case there is no work to do. The for loop that starts on line 5 will add the
symbolic arrays contained in the data to be transferred to the set worklist. The while loop
on line 12 will iterate over a work list until it becomes empty. We also keep track of symbolic
arrays that we have processed using the set processed in order to avoid infinite looping due to
cycles in the constraints. During each iteration of the while loop, we pick a symbolic array (line
13) from the work list and we iterate over each constraint in the sender process (line 17). If a
particular constraint contains a reference to the symbolic array (line 22), we add the constraint
to the set of constraints (line 23) and then add any symbolic arrays to the work list contained
in the constraint (lines 24, 25, 26). At the end of the while loop, the set constraints will
contain all the constraints that need to be added to the destination state to transfer symbolic
data.

50

Listing 8: Computation of the transitive closure of constraints.

1 std::set<ref<Expr> > constraints;
2 if(writableData) {
3 // first, we need to find all symbolic arrays that this data refers to
4 std::set<const Array*> worklist;
5 for(unsigned i = 0, count = writableData->size; i < count; ++i) {
6 ref<Expr> expr = writableData->read8(i);
7 Expr::getSymbolicArrays(expr, worklist);
8 }
9

10 // now we have to find all constraints that contain those symbolic arrays (
transitively)

11 std::set<const Array*> processed;
12 while(!worklist.empty()) {
13 const Array* array = *worklist.begin();
14 worklist.erase(array);
15 processed.insert(array);
16
17 for(ConstraintManager::const_iterator cit = state->constraints.begin(), cend

= state->constraints.end(); cit != cend; ++cit) {
18 ref<Expr> c = *cit;
19 std::set<const Array*> constraintArrays;
20 Expr::getSymbolicArrays(c, constraintArrays);
21
22 if(constraintArrays.count(array) > 0) {
23 constraints.insert(c);
24 for(std::set<const Array*>::iterator arIt = constraintArrays.begin(),

arEnd = constraintArrays.end(); arIt != arEnd; ++arIt) {
25 if(processed.count(*arIt) == 0)
26 worklist.insert(*arIt);
27 }
28 }
29 }
30 }
31 }

Blocking In order to be able to implement any blocking behaviour required by the POSIX
APIs, the networking stack keeps track on the current wait condition that determines whether
a process is blocked. The blocking condition is composed of:

• Events Mask

The events mask is defined as a set of net_event structures (as they have dual roles –
both as representing a “signal” and also a search criteria for “signals”).

• Minimum Count The minimum number of events.

• Timeout A timeout specified in seconds since the Unix epoch.

A process is deemed blocked if and only if the number of events matching the event mask
is less than the minimum count and the time of timeout (if present) has not been reached. On
top of the notion of process being blocked, we define two derived states for a process:

• Runnable A process is runnable if and only if it is not blocked or timed out.

• Stalled A process is stalled if and only if it is blocked and does not have a timeout.

51

7.2.5 World Branching

Our system requires modification to the branching behaviour so that whenever a single process
branches, we need to record the branch in the distributed tree and correctly maintain infor-
mation about the worlds. There are two reasons why states would need to branch: due to a
LLVM bitcode branch whose condition can be both true and false or due to preservation of the
semantics of world isolation whenever processes are communicating.

Code Branch In the case where a branch occurs due to the code, all we have to do is split
the current world into two – in one of the resulting worlds we add all previous processes and one
of the branched ones. Analogously, we do this the same for the other world except we add the
other copy of the branching process. For a visualisation of the process, please refer to Figure 7
on page 27.

World Isolation This case occurs when processes within a world are sending data and we
need to ensure that world isolation is separated. We provide a high-level description of the
algorithm as the actual implementation contains too many implementation artefacts that are
irrelevant. The following algorithm branches any necessary processes – its inputs are a source
process and an event to be sent.

1. Destination Calculation

In this step, we calculate all processes in all worlds that the source belongs to that should
receive the event. We call those the destination processes and we record two bits of
information: the destination process and a pair of the world and the destination process
(as we iterate over the worlds that the source belongs to).

At the end of this step, we have a set of destination processes and a set of pairs of
destination process & world.

2. World Separation

In this step, we iterate over each destination process. During each iteration we calculate
two sets of worlds – the worlds that should receive the event and the worlds that should
not receive the event. We calculate the worlds that should receive the event by iterating
over the pairs of destination processes & worlds and looking for matches. Note that the
worlds contained in the set contain both the destination and source processes.

We also calculate the set of worlds that should not receive event but would have received
it if we just sent it to the current destination process – we do this by just subtracting
the set of worlds which should receive the event from all the worlds that the destination
belongs to.

3. World Branching

The set of worlds which should not receive the event are precisely the set of worlds which
would violate world separation semantics if we sent the event to the current destination.
We just create a single copy of the current destination and exchange it with the destination
process in all the worlds which should not receive the event.

52

B1A1

C1

B1A1

C1

B2A1

C1

B1A1

C1

B1A2

C1

B2A1

C1

B2A2

C1

World 1 World 2 World 3 World 4

Figure 21: Showing the initial configuration before the algorithm has started executing.

In order to provide a better representation of the algorithm, we demonstrate how it works
in a specific situation. In this particular example, we have 3 processes in each world - A, B and
C. Let B have an IPv4 address of 10.0.0.1 and let C have an IPv4 address of 10.0.0.2. Assume
that that from the initial state, B branched and then A branched – we end up with 4 worlds
and 5 distinct processes (3 initial ones and 2 copies for the 2 branches). Assume that process
B1 (i.e., process B which branched at took the false branch condition) wants to send an event
to the process with IPv4 address 10.0.0.2.

1. Destination Calculation

In this step, the algorithm will iterate over World 1 and World 2 (as those are all the
worlds that B1 belongs to) and compute the destination states by using the rules for IPv4
routing of network packets. The result of this step is shown in the figure below.

B1A1

C1

B1A1

C1

B2A1

C1

B1A1

C1

B1A2

C1

B2A1

C1

B2A2

C1

World 1 World 2 World 3 World 4

Figure 22: Showing the state after the first step. The processes in blue (only C1) are the
destination processes and together with the worlds (coloured in green) form the pairs – two
pairs to be exact, (World 1, C1) and (World 2, C1).

2. World Separation

In this step we start by iterating over all destinations – in this case, only C1. Then
we calculate the worlds which should receive the event by going over the pairs that we
computed in the step above – in this case, the worlds that should receive the event are

53

World 1 and World 2 (coloured in green). The worlds which should not receive the event
are defined as all the worlds C1 belongs to minus the worlds that should receive it – in
this case, World 3 and World 4 (coloured in red).

B1A1

C1

B1A1

C1

B2A1

C1

B1A1

C1

B1A2

C1

B2A1

C1

B2A2

C1

World 1 World 2 World 3 World 4

Figure 23: Showing the worlds that should receive the event in green (1 and 2) and the worlds
that should not in red (3 and 4).

3. World Branching

In this step, we create a copy of C1 and replace its occurrence in World 3 and World 4
(which is shown as C2 coloured in blue). It now safe to add the event to the network
inbox of C1 as it will not break the semantics of world separation.

B1A1

C1

B1A1

C1

B2A1

C1

B1A1

C1

B1A2

C1

B2A1

C2

B2A2

C2

World 1 World 2 World 3 World 4

Figure 24: Showing C1 in green which will receive the event and the copy of C1 (C2 in the
diagram) that was created to preserve world separation semantics.

7.2.6 Scheduler

The scheduler is responsible for choosing the next process to execute. It is a very critical part
of the system for two reasons:

• Code Coverage

The searcher has one of the greatest impacts on the code covered as it has to make the
decision which processes to run. If, for example, it chooses paths that lead to very heavy

54

branching in tight loops, our system would run out of memory before exploring much of
the code.

• Performance

The performance of the searcher directly affects the performance of the whole system as
the searcher is asked to select a process for execution after every instruction.

There are two key additional restrictions when scheduling processes in distributed mode:

• Eligibility

If a process is blocked, then it cannot be chosen by the scheduler. This creates a situa-
tion whereby a backtracking scheduler would be penalised for making choices which end
requiring it to backtrack.

• Timeout

The scheduler is also responsible for keeping track of any timeouts for processes. Any
inefficiencies have a direct impact on performance.

Our solution runs in O(1) time during selection of states – no computations whether a state
is blocked are performed during scheduling. We achieve this by:

• Tree Augmentation

Each node in the distributed tree (world tree) gains two additional boolean variables –
runnable and stalled. For the leaf nodes (which represent the worlds), the values for the
booleans are just copies for the world’s runnable and stalled boolean values. In turn, a
world is runnable if and only if it contains at least one process that is runnable. A world
is stalled if and only if all the processes it contains are stalled.

For intermediate tree nodes, the values are defined as follows:

– Runnable A node is runnable if and only if at least one of its children is runnable.

– Stalled A node is stalled if and only if all of its children are stalled.

• Flag Caching & Propagation

Augmenting the tree is the first step in achieving high performance. In addition, the tree
flags are always conservatively updated and propagated as soon as the flags change for a
single process. The reason why this is beneficial and necessary for attaining a very fast
searcher is due to the fact that the ratio of scheduling processes to changes in the flags
is incredibly high – scheduling happens after every instruction while changes in the flags
happen only when the software calls a blocking system call.

By the design of our data structure, the searcher does not need to backtrack as it can just
inspect a node’s runnable property to find out whether at least one process exists down the
subtree that is eligible for execution.

55

B1

A1 Runnable: true
Stalled: false

Runnable: false
Stalled: false

Runnable: true
Stalled: false

Runnable: true
Stalled: false

B2

A2 Runnable: false
Stalled: false

Runnable: false
Stalled: false

Runnable: false
Stalled: false

B3

A3 Runnable: false
Stalled: true

Runnable: false
Stalled: true

Runnable: false
Stalled: true

B4

A4 Runnable: false
Stalled: true

Runnable: false
Stalled: true

Runnable: false
Stalled: true

Runnable: false
Stalled: true

Runnable: true
Stalled: false Node 1

Node 2 Node 3

Figure 25: Showing the augmented world tree. Note how Node 3’s stalled flag is true – by our
definition, that means that all worlds that can be reached from that node will be stalled.

Timeout The ability to specify timeouts of of blocking system calls (e.g., select()) means
that our system needs to handle the case where all processes are blocked and waiting on timeout
to expire. The distributed tree makes it easy to detect that case by just looking at the root
node – if runnable is false and stalled is false, that means that all processes are blocked waiting
for their timeouts to expire.

We needed to extend the base scheduler class to include two methods that are called during
simulation:

• addWaitingStateWithTimeOut(ExecutionState* state, uint32_t absSeconds)

This method is called whenever a process became non-runnable (i.e., runnable is false)
with a specific timeout. It signifies that the scheduler is responsible for managing the
timing out of the process.

• removeWaitingState(ExecutionState* state)

This method is called whenever the scheduler is no longer responsible for managing the
timing out of a particular process. This usually happens under two circumstances – when
the process receives a message that it is blocked on or when the world becomes deadlocked
and all processes are terminated early.

Our scheduler implements those methods by keeping track of the states ordered by their
timeout – this gives us O(lg(n)) insertion and search time. More importantly, it allows us to
time out multiple processes in one go – all we need to do is find the index of the first process
whose timeout is greater than the current time and then time out all processes that appear
before that index in the sorted list.

Deadlock Another case that arises when simulating distributed software is the possibility of
universe deadlock – all processes across all worlds are waiting to receive events from each other

56

and none of them have any timeouts. In this case, the scheduler cannot choose any state that
can be run – although this is an assumption in the scheduler interface (the method which returns
the state to run must always return a valid value). We modified the main simulation loop to
call a method on the scheduler named isDeadlocked() which returns whether the universe
became deadlocked after the execution of the last instruction. If the method returns true,
then all existing processes are forcefully terminated and the simulation ends. We chose to add
an additional method in order to keep the backwards compatibility of all existing schedulers
without having to modify them.

It is crucial to note that the isDeadlocked() method is called after every instruction and
has to be be very fast – any on-the-fly computation would seriously impact the performance.
By the design of our distributed tree, universe deadlock can be detected by just inspecting the
root node’s runnable and stalled property – if stalled is true, then, by the definition of how the
value is computed, we have universe deadlock.

Sequencing Finally, the scheduler also has the responsibility to respect the initialisation order
within each world. The sequence number that users can assign to processes is interpreted as
“initialise the processes in that order until they block”. This is performed by keeping a flag as
part of each process whether it has blocked during its lifetime and taking it into account when
performing round-robin scheduling at the world level.

7.2.7 Invariants Framework

The invariants framework is composed of three parts: the parser, the runtime and the inter-
preter.

Parser The parser is a hand-written recursive-descent parser that reads an invariant program
passed as a command line argument. The output of the parser is an intermediate representation
of the language.

Runtime The runtime provides a memory model to support the execution of the program.
It primarily composes a heap and a stack where the heap is just a mapping of addresses to
objects. The language itself is fully object oriented and the runtime has built-in support for
strings, integers and sequences of bytes.

Interpreter The interpreter runs every time there is new invariant data exposed. It creates
a new runtime (which is very cheap operation) and evaluates all invariants, reporting any
violations. The executor (represented by the class Executor and responsible for driving the
symbolic executor) keeps a flag whether any new invariant data has been exposed after the last
instruction executed. This means that invariant evaluation happens only as necessary and has
a virtually zero cost as data for invariant checking does not get exposed very often.

Interface There are two abstract classes that are used in the invariants framework whose
primary role is to provide the flexibility to use the subsystem in a variety of applications (and
not just being tied to our distributed symbolic execution engine).

Listing 9: Abstract data source class declarations.

1 class DataProvider {
2 public:
3 virtual void* retrieveData(const std::string& node, int state, const std::

string& key, int& size) = 0;

57

4 virtual void releaseData(void* data) = 0;
5 };
6
7 class NodeProvider {
8 public:
9 virtual void retrieveNodes(std::vector<std::string>& outNodes) = 0;

10 };

The Node provider “interface” is needed to provide the implementation of the sys.nodes()
method that can appear in Minvariant programs. The DataProvider “interface” is used to
retrieve the opaque sequences of bytes for the triplets of node, state and key that are specified
the Minvariant programs themselves. When retrieving the data for a specific composite key (a
combination of node, state and key), the size of the data is returned by reference. In addition,
the caller assumes ownership of the opaque byte sequence and must release it when not needed
by calling the releaseData method.

7.2.8 Replay Framework

The primary role of the replay framework is to be able to generate dtest files which compose
(by referencing) existing ktest files and including network topology information. Each world
(i.e., DistributedSystem class) features an object that represents a distributed test case
(DistributedTest class). A distributed test just composes a set of process tests – each of
which contains the filename of the process’ ktest file, its network interfaces and routes together
with a few auxiliary book-keeping properties.

When the last process that is part of world terminates (either in a controlled or uncontrolled
manner), the world’s distributed test file is written to disk, in similar fashion to process test
files.

Figure 26: Showing the class diagram for DistributedTest and its most important relationships.

7.2.9 Code Coverage

Another necessary addition was the ability to track code coverage of the LLVM bit code on a
per-function basis across multiple runs. KLEE already had most of the infrastructure to track
coverage at the function level albeit with two limitations – it tracked coverage at the program
level and included all functions when calculating the total coverage. We modified the system

58

so that a filename can be passed as a command line which includes a list of function and only
those functions will be included as part of the coverage metric. In addition, we added the
ability to track instruction coverage on a per function basis so that we get coverage percentages
for each function. We do this by storing which instructions (for example, the 5th, 6th, etc.)
of a function were executed and this is persisted. A tool was written (klee-cov) which can
combine the information from multiple runs and provide a final aggregate coverage metric on a
per function-basis.

7.3 Runtime

The rest of the system is implemented in C and is responsible for providing implementations of
the POSIX APIs. The implementation can be split into two parts:

• Networking

The networking part provides an implementation of both UDP and TCP sockets using
the special internal APIs exposed by our system to communicate with other processes.

• Filesystem

The filesystem part implements a rudimentary system has has uniform support for for
files and directories and can support symbolic pathnames.

User Program

Network Stack Filesystem

POSIX API

Figure 27: Showing the logical organisation of the user program being simulated with rela-
tion to the runtime which we implement. The functions defined by the POSIX standard are
implemented using our internal network and filesystem subsystems.

In both cases, the subsystems provide their own custom APIs to manage them internally
and then the functions at the POSIX level make use of the aforementioned subsystems. In order
for our system to be able to fully run a minimalistic web server[3], we had provide non-stub
implementations for the following set of functions:

7.3.1 Special Functions

Most of the runtime, especially the networking part, depend on special primitives provided
by our extensions which are implemented outside the runtime. All of them are part of the

59

open write read close opendir closedir readdir

rewinddir seekdir telldir dup dup2 lseek fcntl

fstat select getcwd chdir fchdir sleep socket

connect bind listen accept recv recvfrom send

sendto getsockopt setsockopt getsockname getpeername

Table 1: Set of POSIX functions implemented.

netklee.h header file and the most important ones include:

• klee_net_will_get_events
This is one of the most important special functions that are used to implement blocking
behaviour. It accepts a set of event masks, a minimum event count and a timeout. The
scheduler will ensure that the calling process is blocked at this function call until either
there are enough events matching the event masks or the time out has expired.

• klee_net_has_pending_events
This function allows the calling process to inspect its network “inbox” without blocking
– it accepts a set of event masks and returns the number of events that match the set.

• klee_net_events_get, klee_net_event_put & klee_net_event_remove

These three functions allow the calling process to send events to other processes and
also retrieve & remove events from its “inbox”. Note that retrieving an event does not
implicitly remove the event from the “inbox”, it has to be removed explicitly with a call
to klee_net_event_remove.

• klee_net_event_data_alloc & klee_net_event_data_free

This pair of functions are similar to malloc and free but with a twist – instead of pass-
ing the number of bytes to allocate, klee_net_event_data_alloc accepts an event
identifier and it will return the byte sequence associated with the event (if any). The caller
owns the memory and is responsible to dispose of it by calling klee_net_event_data_free.

• klee_invariant_expose_data
This functions allow the calling process to expose data for invariant verification.

• klee_net_write_filesystem
This function will persist any current in-memory files to the disk for later inspection.

7.3.2 Networking

The networking APIs are implemented on top of an internal “net stack”. The “net stack”’s
responsibility is to model network sockets and provide the ability to read and write data to the
sockets. It has no awareness of file descriptors or how it fits into the bigger picture – it is meant
to be small and re-usable. There are two central data structures – socket and socket data.
A socket has a pointer to a linked list of socket data structures – each socket data structure
represents an individual data packet at the network level in the OSI model. There is a set of
high level functions that allow for efficient manipulation and use of the data structures without
managing any intricate details. Using a linked-list makes sense in this case as sockets do not
provide random access and data is always read as a stream.

60

Listing 10: Network Stack structure definitions.

1 enum NetStackSocketType {
2 kNetStackSocketTypeUndefined,
3 kNetStackSocketTypeUDP,
4 kNetStackSocketTypeTCP
5 };
6
7 enum NetStackSocketState {
8 kNetStackSocketStateUndefined,
9 kNetStackSocketStateListening,

10 kNetStackSocketStateConnected,
11 kNetStackSocketStateClosed
12 };
13
14 enum NetStackSocketFlag {
15 kNetStackSocketFlagNone = (0),
16 kNetStackSocketFlagNonBlocking = (1 << 0)
17 };
18
19 enum NetStackSocketInternalFlag {
20 kNetStackSocketInternalFlagNone = (0),
21 kNetStackSocketInternalFlagSeenClose = (1 << 0)
22 };
23
24 struct NetStackSocketData {
25 uint32_t remote_ip;
26 uint16_t remote_port;
27
28 uint8_t* data;
29 // size is total size of data
30 uint32_t size;
31 // cursor points to the beginning of unread data
32 uint32_t cursor;
33
34 // linked list next
35 struct NetStackSocketData* next;
36 };
37
38 struct NetStackSocket {
39 // internal state
40 uint8_t active;
41 enum NetStackSocketType type;
42 enum NetStackSocketState state;
43 enum NetStackSocketFlag flags;
44 enum NetStackSocketInternalFlag iflags;
45
46 uint32_t local_ip, remote_ip;
47 // ports in native order
48 uint16_t local_port, remote_port;
49 // for stream connections
50 uint32_t connection_id;
51
52 // the head of the linked list
53 // invariant: input_head is not NULL, then always has data
54 struct NetStackSocketData* input_head;
55 };

Each socket has a flag (active) whether it is currently in use. The type field indicates
whether it is a TCP or UDP socket (the only two types of sockets supported so far). TCP

61

sockets can also have an associated state – for example, a socket which has been used in a
listen() function call be in a listening state. In order to correctly implement non-blocking
behaviour of sockets, we need to record the fact that it is a non-blocking socket which is done
in the flag field. The field iflags is a shorthand for internal flags. Currently, we only have
one internal flag which indicates whether the socket has already told the caller that it has been
closed. This is used to implement the correct semantics when reading from an already closed
socket. In addition, the socket stores any IPs and ports that it has been bound to and for TCP
connections, the connection identifier.

Each data packet (struct NetStackSocketData) needs to keep the remote IP and
address because a UDP socket can receive packets from multiple sources. For TCP clients, the
values of those fields across all packets will be the same. Finally, each data packet has a cursor
field which indicates how much data has been read, as the caller might request to read less bytes
than available on the network.

w o r l d
size: 5 cursor: 0

H e l l o
size: 5 cursor: 2

Socket

Figure 28: Showing an instance of a socket where the sender has sent two packets – the first
containing the bytes Hello and the second world. The receiver has so far consumed 2 bytes
from the received data. After the remaining 3 bytes from the packet are consumed, the first
data packet will be discarded and the socket will point directly to the second packet.

Network Stack

POSIX API

Event Functions

Figure 29: Showing the relationship between the POSIX function APIs, our internal network
stack and the “special” event functions that expose event transfer between processes. The
arrows indicate API usages. Note that there is no connection between the network stack and
the special event functions – this provides separation, modularity and reusability as the network
stack does not depend on a particular source of data.

62

We will now explain how the important POSIX socket APIs are implemented by using
the our internal network stack and the special functions. We omit error handling and any
code related to providing additional features, like failure injection which is part of the actual
implementation.

accept() & connect() are used to establish a TCP connection between two processes. The
functions use two event types to perform their function:

• net_event_type_request represents a request to establish a TCP connection.

• net_event_type_reply represents a reply to the a request to establish a TCP con-
nection.

accept() blocks waiting for a connection request and sends a reply once it receives one.
connect() is the dual – it sends a connection request and waits for a reply to its request.

Listing 11: accept() and connect() implementation with error handling omitted.

1 int connect_tcp(struct NetStackSocket* s, const struct sockaddr *serv_addr,
socklen_t addrlen) {

2 // send the connection request
3 struct net_event request = {net_event_type_request, 0, s->local_ip, to_ip, s->

local_port, to_port, NetStackNextRequestID++, 0};
4 klee_net_event_put(&request, NULL);
5
6 // wait for the connection reply
7 struct net_event reply_mask = {net_event_type_reply, 0, to_ip, s->local_ip,

to_port, s->local_port, request.req_id, 0};
8 klee_net_will_get_events(&reply_mask, 1, 1, 0, 0);
9

10 struct net_event reply;
11 if(klee_net_events_get(&reply, 1, &reply_mask, 1) == 1) {
12 // remove reply event
13 klee_net_event_remove(reply.identifier);
14
15 // setup socket
16 ...
17 return 0;
18 }
19
20 errno = ETIMEDOUT;
21 return -1;
22 }
23
24
25 int accept_tcp(struct NetStackSocket* s, struct sockaddr *addr, socklen_t *

addrlen) {
26 // make a mask and either block or check if we will block
27 struct net_event event_mask = {net_event_type_request, 0, 0, s->local_ip, 0, s

->local_port, 0, 0};
28 if((s->flags & kNetStackSocketFlagNonBlocking) && !klee_net_has_pending_events

(&event_mask, 1, 1)) {
29 errno = EWOULDBLOCK;
30 return -1;
31 }
32
33 // possibly block
34 klee_net_will_get_events(&event_mask, 1, 1, 0, 0);
35

63

36 struct net_event event;
37 if(klee_net_events_get(&event, 1, &event_mask, 1) == 1) {
38 // remove event
39 klee_net_event_remove(event.identifier);
40
41 uint32_t con_id = NetStackNextConnectionID++;
42 // reply to the request
43 struct net_event reply = {net_event_type_reply, 0, s->local_ip, event.

from_ip, s->local_port, event.from_port, event.req_id, con_id};
44 klee_net_event_put(&reply, NULL);
45
46 // try to get a socket + fd and associate with socket
47 struct PosixDescriptor* client_descriptor = posix_layer_allocate_socket();
48 ...
49
50 // return client socket
51 return client_descriptor->fd;
52 }
53
54 errno = ETIMEDOUT;
55 return -1;
56 }

connect() starts off (line 3) by creating a connection request event and appropriately
setting the receiver and sender IPs and ports. Notably, it assigns a locally unique request
identifier to the event and at the same time increments it so that the invariant is preserved –
the value of NetStackNextRequestID always contains the next identifier that can be used.
On line line 4, the event is sent on its own without any additional data. On line 7, an event
mask (that is, a search criteria) is created that will match the possible reply from the other end
– note the reversal of to / from IPs & ports. In addition, the code correctly sets the request
identifier to the value that was sent. On line 8, the calling process will be blocked until a reply
arrives. If the process reaches line 11, it means that it must have been unblocked (that is,
received a reply), so it tries to receive the reply from the other send. klee_net_events_get
will return the number of events retrieved and as we are asking for a maximum of one, checking
for success amounts to checking for equality with 1. If we managed to retrieve an event, we
need to remember to remove it from the network “inbox” which is done at line 13. Finally, after
setting up internal bookkeeping information (omitted in the listing), we return to the caller at
line 17.

accept() begins by checking whether it is a non-blocking socket (on line 28). If it is a
non-blocking socket and there are no pending connection requests, it must return immediately
(line 30) as otherwise it will block on line 34. When line 34 is reached, either the socket is
a blocking one or it is a non-blocking one but with a pending request event in the network
“inbox”. In all cases, once execution reaches line 37, the process has a connection request
waiting in its “inbox” which it tries to retrieve. On successful retrieval (line 39), the request
is removed, a connection reply constructed (line 43) and sent to the sender of the request (line
44). Afterwards, an unused file descriptor is allocated (47) and we return the file descriptor to
the caller (line 51).

sendto() has one of the simplest implementations. As the majority of the code is error
handling, we only show one of the internal function that perform the data send.

Listing 12: Sending data to another process.

1 static uint32_t send_socket_data_raw(const void* buf, size_t len, struct
NetStackSocket* socket, uint32_t remote_ip, uint16_t remote_port) {

64

2 struct net_event event = {net_event_type_data, 0, socket->local_ip, remote_ip,
socket->local_port, remote_port, 0, socket->connection_id};

3 uint8_t* data = malloc(len);
4 memcpy(data, buf, len);
5 uint32_t status = klee_net_event_put(&event, data);
6 free(data);
7
8 return status;
9 }

send_socket_data_raw starts off by creating the primitive event to send by filling in
the type, sender and recipient IPs & ports and setting the connection identifier. Then it creates
a temporary buffer and copies the data that was requested to be sent into that buffer (lines 3
and 4) The reason for this implementation artefact is that klee_net_event_put can only
send a complete memory object and not partial ranges. After the event and the data are sent
(line 5), the temporary buffer is freed (line 6). Finally, we return the status of the send to the
caller (line 8).

recvfrom() is the primitive that allows processes to receive data from the network. Its
implementation is considerably longer and more complicated thus we will only show the most
interesting part – retrieving data from the network by using the special functions and piping
into our internal network stakc.

Listing 13: Receiving data from a socket.

1 // Returns if the socket was closed (with no other data).
2 inline static void process_network_events(struct NetStackSocket* socket, struct

net_event* events, uint32_t count) {
3 // 1) find the first close event (+ update state of socket to closed)
4 // 2) read the data from all data events beforehand
5 // 3) remove all events that we had to process
6 // 4) if we had a close event, remove all events on that socket
7
8
9

10 // 1
11 ..
12
13 // 2
14 for(i = 0; i < close_event_idx; ++i) {
15 struct net_event* event = &events[i];
16 if(event->type == net_event_type_data) {
17 uint32_t data_size = 0;
18 uint8_t* data = klee_net_event_data_alloc(event->identifier, &data_size);
19 if(data != NULL) {
20 net_stack_socket_write(socket, data, data_size, event->from_ip, event->

from_port);
21 klee_net_event_data_free(data);
22 }
23 }
24 }
25
26 // 3
27 for(i = 0; i < count; ++i) {
28 struct net_event* event = &events[i];
29 klee_net_event_remove(event->identifier);
30 }
31

65

32 // 4
33 if(close_event_idx < count)
34 sockets_remove_all_events(socket);
35 }
36
37 inline static void receive_data_from_network_single_packet(struct net_event*

event_mask, struct NetStackSocket* socket) {
38 // block waiting for events
39 klee_net_will_get_events(event_mask, 1, 1, 0, 0);
40
41 // read the events
42 struct net_event event;
43 if(klee_net_events_get(&event, 1, event_mask, 1) == 1)
44 process_network_events(socket, &event, 1);
45 }

This internal function process_network_events receives an array of primitive network
events that were pulled from the network “inbox” and its role is to read data from them. The
loop on line 14 iterates over all data packet events. For each of them, it tries to retrieve the
data that the sender has sent (line 18). Any data that is received is piped into the socket (line
20) and released (line 21). Note the high-level usage of the function that writes data to the
socket – we do not have to worry about managing the details of how that is stored efficiently.
The internal implementation of how data is stored can completely change without having to
modify the upper layers. Once any data has been read and piped into the the network stack,
we proceed to remove all events from the “inbox” (lines 28, 29). Finally, if a close event was
received, we remove all pending events for that socket (lines 33, 34).

receive_data_from_network_single_packet tries fetches one event from the net-
work by firstly possibly blocking (line 39). After the system has unblocked the process, it tries
to retrieve the event matching the mask (line 43) and if successful, processes the event (line 44).

select() is one of the most important functions that is used in networked systems – it used to
perform I/O multiplexing by observing the status of multiple file descriptors. Servers usually
have a select() loop which listens for any activity on the socket that accepts new connections
and also for any activity on any open connections. Due to the importance of this system call
and despite its implementation length, we have included the source code in Listing 14.

The code starts off by checking whether it should simulate a failure (lines 2-12) and if it
should not, then execution continues on line 18. The code creates copies of any file descriptor
sets passed in – this is needed because the function parameters are both used as inputs and
outputs and since we need to zero them out, we firstly copy their values. As the file descriptor
sets can be NULL, we semantically treat it as if the user passed an empty set (lines 25, 33, 41).
When we reach line 45, we have zeroed out any parameters and retained their original values.
On lines 45-49, we declare several variables which will be needed later on – socket_masks will
store the masks for any sockets that we might have to block on while socket_masks_fds will
store the corresponding file descriptor for each mask (this is required so that we know which bit
to set in the file descriptor sets given a particular event mask). socket_mask_index stores
an index to the next unused socket mask index (and also provides the number of socket masks
in use). As select() splits events into three types (read, write and except), we create two
mask types on lines 48 and 49 (for read and except). The reason why we do not create a mask
for write is due to the fact that, by design, our sockets have unlimited buffer sizes, so data can
always be written to them.

One of the most important sections in the function is the for loop that starts on line 53 and
finishes on line 132 – its purpose is to find whether any file descriptors are already “ready” and

66

turn on the appropriate bits in the file descriptor sets. Lines 54-56 read the input parameters
which tell us what activity the caller is interested for the current file descriptor (variable i).
Lines 59-63 handle the case where an invalid file descriptor was passed. Afterwards, there are
two possibilities – a file descriptor can either represent a file or a socket. If it is a file (lines
65-81), then the file is ready for all all operations that were requested (we need to ensure that
we only enable bits that the user requested to be checked, as exemplified by the if statements
on lines 67, 72 and 77).

The other alternative is that the file descriptor represents a socket (lines 82-130). The easiest
case is when the caller wants to write to a socket (lines 125-129) which we always allow. On other
hand, if the caller is interested whether the socket can be read from or whether it was closed,
things become more complex. We need to do two things to be able to answer those queries –
we need to check whether we already have not received an appropriate event beforehand (e.g.,
there might be unconsumed data in the socket buffer) and also check the network “inbox” for
any pending events. These tasks are performed in lines 95-103 and 105-114. Note that there is
a variable count which keeps the total number of enabled file descriptors and a local variable
enabled_bit that records whether we can potentially block on the current socket. On lines
116-122 we save the current event search mask for later – this happens if the caller requested
either read or close events although none of those are available at present.

After we have processed all descriptors, execution continues on line 135. If we have found
at least once “ready” descriptor or we should not block, we return immediately (line 136).
Otherwise, no file descriptors were “ready” and we had a valid timeout specified. In this case,
we sanity check the number of masks that we can wait on, on line 139-141 to ensure that if we
continue, we do not pass invalid values to the special functions.

On line 153, we block waiting for any events that we previous saved in the for loop. Once
execution reaches 156, either the timeout expired or a matching event arrived in the network
“inbox”. In either case, we need to loop over all event masks and check whether there is any
new activity (lines 156-175). If so, we enable the corresponding bit in the file descriptor sets
(lines 164-172). Finally, we return the total number of “ready” descriptors on line 177.

Listing 14: Implementation of select() system call.

1 int select(int nfds, fd_set *read, fd_set *write, fd_set *except, struct timeval

*timeout) {
2 static unsigned n_selects = 0;
3 static int next_errno = EINTR;
4 unsigned sfail_interval = posix_layer.failures.select_fail_interval;
5 if(sfail_interval && (n_selects % sfail_interval == 0)) {
6 ++n_selects;
7 errno = next_errno;
8 if(next_errno == EINTR)
9 next_errno = EIO;

10 else
11 next_errno = EINTR;
12 return -1;
13 }
14
15 ++n_selects;
16
17 // firstly, copy in all fds + zero out the arguments
18 fd_set in_read, in_write, in_except;
19
20 if(read) {
21 in_read = *read;
22 FD_ZERO(read);
23 }

67

24 else {
25 FD_ZERO(&in_read);
26 }
27
28 if(write) {
29 in_write = *write;
30 FD_ZERO(write);
31 }
32 else {
33 FD_ZERO(&in_write);
34 }
35
36 if(except) {
37 in_except = *except;
38 FD_ZERO(except);
39 }
40 else {
41 FD_ZERO(&in_except);
42 }
43
44 // we will store masks for sockets which the caller has requested but no

events are available
45 struct net_event socket_masks[MAX_SOCKET_BLOCK];
46 int socket_masks_fds[MAX_SOCKET_BLOCK];
47 int socket_mask_index = 0;
48 enum net_event_type read_mask_type = (net_event_type_data|

net_event_type_request|net_event_type_reply);
49 enum net_event_type except_mask_type = (net_event_type_close);
50
51 int count = 0;
52 int i;
53 for(i=0; i<nfds; ++i) {
54 int read_bit = FD_ISSET(i, &in_read);
55 int write_bit = FD_ISSET(i, &in_write);
56 int except_bit = FD_ISSET(i, &in_except);
57
58 if(read_bit || write_bit || except_bit) {
59 struct PosixDescriptor* descriptor = posix_layer_find_descriptor_for_fd(i)

;
60 if (descriptor == NULL) {
61 errno = EBADF;
62 return -1;
63 }
64
65 if(descriptor->file) {
66 // file io never blocks
67 if(read_bit) {
68 FD_SET(i, read);
69 ++count;
70 }
71
72 if(write_bit) {
73 FD_SET(i, write);
74 ++count;
75 }
76
77 if(except_bit) {
78 FD_SET(i, except);
79 ++count;
80 }

68

81 }
82 else if(descriptor->socket) {
83 if(read_bit || except_bit) {
84 // we need to consult KLEE to find out whether there are pending

events
85 struct NetStackSocket* socket = descriptor->socket;
86 enum net_event_type mask_type = net_event_type_none;
87 if(read_bit)
88 mask_type |= read_mask_type;
89 if(except_bit)
90 mask_type |= except_mask_type;
91 struct net_event event_mask = {mask_type, 0, socket->remote_ip, socket

->local_ip, socket->remote_port, socket->local_port, 0, 0};
92 uint8_t pending_events = klee_net_has_pending_events(&event_mask, 1,

1);
93
94 int enabled_bit = 0;
95 if(read_bit) {
96 int has_data = net_stack_socket_has_data(descriptor->socket);
97 int pending_data = pending_events && (event_mask.type &

read_mask_type);
98 if(has_data || pending_data) {
99 FD_SET(i, read);

100 ++count;
101 ++enabled_bit;
102 }
103 }
104
105 if(except_bit) {
106 int closed = (descriptor->socket->state ==

kNetStackSocketStateClosed);
107 int seen_closed = (descriptor->socket->iflags &

kNetStackSocketInternalFlagSeenClose);
108 int pending_closed = pending_events && (event_mask.type &

except_mask_type);
109 if((closed && !seen_closed) || pending_closed) {
110 FD_SET(i, except);
111 ++count;
112 ++enabled_bit;
113 }
114 }
115
116 if(!enabled_bit) {
117 // no pending events at the moment, so we can definitely block on

that mask
118 assert(socket_mask_index < MAX_SOCKET_BLOCK && "Run out of socket

block masks");
119 socket_masks[socket_mask_index] = event_mask;
120 socket_masks_fds[socket_mask_index] = i;
121 socket_mask_index++;
122 }
123 }
124
125 if(write_bit) {
126 // we can always write
127 FD_SET(i, write);
128 ++count;
129 }
130 }
131 }

69

132 }
133
134 // if we found at least one event or we shouldn’t block, then return

immediately
135 if(count != 0 || (timeout && timeout->tv_sec == 0 && timeout->tv_usec == 0))
136 return count;
137
138 // there’s nothing we can wait on
139 if(socket_mask_index == 0) {
140 errno = EINVAL;
141 return -1;
142 }
143
144 // so we’ve got no fds that are ready and we have to block
145 uint32_t secsTimeout = 0;
146 uint32_t usecsTimeout = 0;
147 if(timeout) {
148 secsTimeout = timeout->tv_sec;
149 usecsTimeout = timeout->tv_usec;
150 }
151
152 // block waiting for events
153 klee_net_will_get_events(socket_masks, socket_mask_index, 1, secsTimeout,

usecsTimeout);
154
155 // now, lets re-evaluate the situation
156 for(i = 0; i < socket_mask_index; ++i) {
157 struct net_event mask = socket_masks[i];
158 if(klee_net_has_pending_events(&mask, 1, 1)) {
159 int fd = socket_masks_fds[i];
160 if(mask.type != net_event_type_none) {
161 int read_bit = FD_ISSET(fd, &in_read);
162 int except_bit = FD_ISSET(fd, &in_except);
163
164 if(read_bit && (mask.type & read_mask_type)) {
165 FD_SET(fd, read);
166 ++count;
167 }
168
169 if(except_bit && (mask.type & except_mask_type)) {
170 FD_SET(fd, except);
171 ++count;
172 }
173 }
174 }
175 }
176
177 return count;
178 }

7.3.3 Filesystem

The filesystem is implemented in a similar fashion to the network stack – independent of its users
and without any external dependencies. The filesystem implementation uses two structures:

• FileSystemHandle

A handle represents a currently open file and it has two main responsibility: to maintain
the state information for the open file description and to contain a pointer to the actual

70

data. The importance of separating this structure from the data is important because it
allows us to correctly implement file descriptor duplication – two file descriptors can just
point to the same handle. Reading from either of them will advance a shared cursor, as
required by the POSIX standard.

• FileSystemData

This structure represents the data for an item on the filesystem. The actual fields that
are in use depend on the type of item – we support symbolic files and directories and
also native files and directories. Unifying the handling of both native and symbolic files
& directories simplifies the code and makes it easier to extend.

The definition of the two structures is shown below:

Listing 15: Filesystem structures.

1 // A handle is unused iff refcount == 0 && data == NULL;
2 // Invariant: data != NULL iff refcount > 0
3 struct FileSystemHandle {
4 unsigned refcount;
5 unsigned offset;
6 enum FileSystemFileMode mode;
7 enum FileSystemFileOptions opts;
8 struct FileSystemData* data;
9 };

10
11 struct FileSystemData {
12 enum FileSystemDataFlag flag;
13 char* path;
14
15 // When flag:
16 // - File: the logical size of the file
17 // - Directory: the number of contained items in the directory
18 unsigned contents_size;
19
20 // The following fields are only valid for symbolic files.
21 // invariants:
22 // - contents_size <= buffer_size
23 // - contents == NULL iff buffer_size = 0
24 unsigned buffer_size; // the real size of the malloced region
25 char* contents;
26
27 // The following fields are only valid for symbolic directories.
28 // invariants:
29 // - contents_size == 0 iff subitems == NULL
30 struct FileSystemData** subitems;
31 };
32
33 // Represents the access mode of a file (as a bitmask).
34 enum FileSystemFileMode {
35 kFileSystemFileModeUndefined = 0,
36 kFileSystemFileModeRead = (1 << 0),
37 kFileSystemFileModeWrite = (1 << 1),
38 kFileSystemFileModeReadWrite = (kFileSystemFileModeRead|

kFileSystemFileModeWrite)
39 };
40
41 enum FileSystemFileOptions {
42 kFileSystemFileOptionsNone = 0,
43 kFileSystemFileOptionsNullSink = (1 << 0),

71

44 kFileSystemFileOptionsCreate = (1 << 1)
45 };
46
47 enum FileSystemDataFlag {
48 kFileSystemDataFlagUnused,
49 kFileSystemDataFlagSymbolicFile,
50 kFileSystemDataFlagNativeFile,
51 kFileSystemDataFlagSymbolicDir,
52 kFileSystemDataFlagNativeDir,
53 kFileSystemDataFlagStdOutput,
54 kFileSystemDataFlagStdError
55 };

FileSystemHandle The structure contains a reference count field which keeps track of how
many file descriptors are using the handle. This is needed so that we know when it is safe to
re-use a handle. In addition, the handle keeps the current file offset. It also specifies the file
mode – read, write or both so that we do not allow callers to write to a file that they have
opened as read-only. It contains a set of options in the opts field – currently, one option is
the null sink option and the other is flag to create a file if it does not exist already. We require
the null sink option so that we can essentially nop operations on such handles but pretend that
we have written any bytes (and always return EOF when reading). Finally, a handle contains
a pointer to the data behind the handle (which can be NULL for special files like stdin and
/dev/null).

FileSystemData This structure’s two most important fields are path and flag. The path
for any piece of data is stored so that all handles link to the same backing store – if a program
opens the same file path and writes from one while reading from the other, the one reading
should not see the “world” differently than the one that has been writing. The flag field
tells us whether the structure is in use and if so, what kind of item it is. If the flag is one of
the native ones, we know that when trying to open that data item, the native open() call
must have succeeded. We also have two special flags for standard output and standard error
– this is so that we can find them and persist them when the simulation ends. There are also
two symbolic flags – one for a symbolic file and one for a symbolic directory. The rest of the
fields’ values are only defined when we have symbolic items. For example, when we have a
symbolic directory, subitems points to the beginning of an array of pointers to file system
data structures. The number of items in the array is specified by the field contents_size.
For symbolic files, the data stored is pointed by contents and buffer_size specifies to size
of the malloc()ed region – the reason why we need it, is because we usually allocate buffers
slightly larger than the data the user wants to write, so that we do not realloc() on every
write to a symbolic file.

OS File Descriptors One important aspect is that we do not keep a file descriptor around
when the file is backed by the OS – instead, we open() the path when needed. The reason
is that if a state has branched many times and all of them are trying to open the same file at
some later point, we would end up with thousands of native open file descriptors to the same
file – a wasteful use of file descriptors which can actually starve our system and other states
depending on the amount of branching that is happening.

API The filesystem part provides 4 high-level functions that are used to implement the POSIX
functions: filesystem_handle_open which handles all the complexities of opening both

72

symbolic and non-symbolic files & directories, filesystem_handle_read, filesystem_handle_write
which are used to read and write data to files, respectively and finally filesystem_handle_close
which closes a file system handle.

Duplication This particular choice of data structures makes it very easy to implement the
required POSIX functions. For example, in order to implement file descriptor duplication
(dup() and dup2()) all we have to do is increment the reference count for the relevant handle.

Listing 16: Implementing file descriptor duplication.

1 static int duplicate_descriptor(struct PosixDescriptor* descriptor) {
2 assert(descriptor != NULL && descriptor->file != NULL && "Invalid file

descriptor");
3
4 struct PosixDescriptor* unused = posix_layer_find_unused_fd();
5 if(unused == NULL) {
6 errno = EMFILE;
7 return -1;
8 }
9

10 struct FileSystemHandle* handle = descriptor->file;
11 handle->refcount++;
12 unused->file = handle;
13
14 return unused->fd;
15 }

One of the relatively more complex functions is responsible for opening a path. To illustrate
the function’s increased complexity relative to the rest of the higher-level functions, the source
is reproduced in Listing 17.

Lines 4-13 perform sanity checks for invalid parameters. On line 15, we try to find an unused
handle – it is possible that we have run out of file handles if the user program opens too many
files. In this case, there is nothing we can do and we return an error. Crucially, on line 22
we check whether the path name is concrete – we cannot pass symbolic data to the OS as the
behaviour is undefined. filesystem_handle_open_symbolic_file will try to match the
path name against a very limited set of pre-defined entities on the filesystem, thus avoiding the
creation of a lot of processes. On line 26, we try to find if we already know about the path.
Lines 27-31 deal with the case when the caller is trying to open a file for writing that it backed
by OS. In order for processes not to be able to affect each other, we do not support this option
at present time. The issue is covered in more detail in Evaluation (section 8). On the other
hand, if the caller is not trying to write to a native file, we successfully setup an unused handle
and associate it with the already existing data item (line 33).

If we reached line 36, that means that we need to create a new filesystem data item as one
for the path name was not found. Line 44 calls a utility function that ensures that we can safely
pass pathname to the OS – it does not cause any branching, despite what its name might
suggest (furthermore, when we reach line 44, we know the path name does not contain any
symbolic characters due to the test on line 22). On line 47, we bypass our system and perform a
direct system call to the OS, trying to open the path name. Lines 49-55 handle the case where
we do not have a backing OS entry – we create a symbolic in-memory file if the creation flag
has been specified.

If the OS file exists, we continue on line 59 where we have to perform an fstat() to be able
to tell whether the entry is a directory or a file. An implementation detail is that the fstat()
system call operates on a different structure than the library function fstat(). Lines 70-72

73

again handle the case with writing to OS backed files. Finally, lines 77-80 handle the cases for
opening a directory or a file. The reason for the code on lines 82-83 is because the user can
try to open special files, like /proc/cpuinfo and others, which are unsafe because we do not
model their behaviour correctly.

Listing 17: Implementing file descriptor duplication.

1 struct FileSystemHandle* filesystem_handle_open(const char* pathname, enum
FileSystemFileMode mode, enum FileSystemFileOptions opts) {

2 assert(pathname != NULL);
3
4 if(mode == kFileSystemFileModeUndefined) {
5 errno = EINVAL;
6 return NULL;
7 }
8
9 unsigned pathlen = strlen(pathname);

10 if(pathlen == 0) {
11 errno = EINVAL;
12 return NULL;
13 }
14
15 struct FileSystemHandle* unusedHandle = filesystem_find_unused_handle();
16 if(unusedHandle == NULL) {
17 errno = EINVAL;
18 return NULL;
19 }
20
21 // firstly, we need to check if the pathname is symbolic
22 if(!klee_is_concrete(pathname, pathlen))
23 return filesystem_handle_open_symbolic_file(pathname, pathlen, unusedHandle,

mode, opts);
24
25 // pathname is concrete, so let’s try to find the data already
26 struct FileSystemData* existingData = filesystem_find_existing_data_for_path(

pathname);
27 if(existingData) {
28 if(existingData->flag == kFileSystemDataFlagNativeFile && (mode &

kFileSystemFileModeWrite)) {
29 assert(0 && "Unsupported writing to native files");
30 return NULL;
31 }
32
33 return filesystem_setup_handle(unusedHandle, mode, opts, existingData);
34 }
35
36 struct FileSystemData* unusedData = filesystem_find_unused_data();
37 if(unusedData == NULL) {
38 errno = EINVAL;
39 return NULL;
40 }
41
42 // concrete pathname with no existing data, we will go to the OS
43 // it’s concrete, we need to go to the OS and check if the file is there
44 pathname = __concretize_string(pathname);
45 int native_flags = O_RDONLY;
46 mode_t native_mode = 0;
47 int os_fd = syscall(__NR_open, pathname, native_flags, native_mode);
48
49 if(os_fd == -1) {

74

50 // there’s no OS file, we only allow to proceed if we have the O_CREAT flag
51 if(opts & kFileSystemFileOptionsCreate)
52 return filesystem_setup_handle_with_data(unusedHandle, mode, opts,

unusedData, kFileSystemDataFlagSymbolicFile, pathname, pathlen);
53
54 // OS doesn’t exist but they want to open, so no-go
55 return NULL;
56 }
57
58 // fstat and close the file
59 struct kernel_stat st;
60 int fstat_retval = syscall(__NR_fstat, os_fd, &st);
61 syscall(__NR_close, os_fd);
62 if(fstat_retval == -1) {
63 // some error occured, we can’t proceed
64 errno = EIO;
65 return NULL;
66 }
67
68
69 // OS-backed file exist, we can only proceed if they don’t want to write to it
70 if(mode & kFileSystemFileModeWrite) {
71 assert(0 && "Unsupported writing to OS-backed files");
72 return NULL;
73 }
74
75 // it’s possible that they actually opened a directory, so we need to check
76 enum FileSystemDataFlag dataFlag;
77 if(S_ISDIR(st.st_mode))
78 dataFlag = kFileSystemDataFlagNativeDir;
79 else if(S_ISREG(st.st_mode))
80 dataFlag = kFileSystemDataFlagNativeFile;
81 else {
82 errno = EIO;
83 return NULL;
84 }
85
86 return filesystem_setup_handle_with_data(unusedHandle, mode, opts, unusedData,

dataFlag, pathname, pathlen);
87 }

7.3.4 Failure Model

The failure model’s role in our system is to artificially introduce failures of system calls. The
user specifies various failure options on the command line that get parsed and values get assigned
to the failure model structure. Its definition is shown in Listing 18. There are several notes of
interest.

enum FailureFlags The flags defined in the enumeration will be stored in the flags field of
struct Failures. The first two flags exists so that whenever we inject a failure for open()
or chdir(), we also explore different return codes. Even though this increases the number
of states, it also allows us to cover code which otherwise would not be covered – some callers
take a different action depending on the particular value of errno. For example, if open()
returns ENOENT (does not exist), then a web server would return a 404 Not Found while if
open() returns EACCES (permission denied), the client will receive 403 Forbidden. The last
flag provides the ability for fstat() to return a date that is far back in the past and also a

75

date that is far into the future. The reason for not completely marking the dates as symbolic
is because in preliminary testing, code that analyses timestamps caused the constraint engine
to be stuck at 100% usage for long periods of time without making any progress. On the other
hand, providing the dates illustrated above resulted in covering all code paths that depended
on their values.

socket block interval field This field can be used to set an interval of how often write()
would return EWOULDBLOCK – this error is returned whenever the OS buffer is filled up. As we
do not define the capacity of any such buffers, this option is the only way to induce a write()
failure with that error.

select fail interval field Similar to the field above, this defines an interval of how often
select() would just return a failure.

Listing 18: Failure model structure.

1 enum FailureFlags {
2 // whether open() should fail in multiple ways (diff errno)
3 kFailureFlagsOpenMultipleErrno = (1 << 0),
4 kFailureFlagsChdirMultipleErrno = (1 << 1),
5 kFailureFlagsFstatSymTimes = (1 << 2),
6 };
7
8 struct Failures {
9 // various failure options

10 unsigned flags;
11 // write() will block every X times (0 for no blocking)
12 unsigned socket_block_interval;
13 // select() will fail every X times (0 for no failures)
14 unsigned select_fail_interval;
15 // total across all calls
16 unsigned maximum_failures;
17 };

In addition, any places that need to simulate failure will have to use a symbolic variable as a
branch condition so that both paths are explored. This is illustrated in the code snippet below.

Listing 19: Injecting failure.

1 int fail = klee_int("open:fail");
2 if(posix_layer.failures.maximum_failures && fail) {
3 --posix_layer.failures.maximum_failures;
4 errno = EIO;
5 return -1;
6 }

An important aspect that needs highlighting is the fact that the number of maximum failures
is decremented only along the path which failed the system call. This is because, by definition,
the user specifies the number of maximum failures that can occur along a path of execution.
If the value was decremented beforehand, then exploring failures would only be attempted that
many times – it would mean that in a sequence of two possibly failing system calls and a
maximum failure of one, the scenario of the second one failure would never be explored.

Finally, the order of the conditions is important as well – if we checked the symbolic variable
first, we would be unnecessarily branching every single time the code is encountered, even if the
maximum limit has been reached.

76

7.3.5 Runtime Structures

Finally, we statically allocate structures for sockets, files and descriptors. There are also various
utility functions provided to deal with file descriptors. Some of them include posix_layer_find_socket_for_fd,
posix_layer_find_file_handle_for_fd, posix_layer_find_unused_fd which are
used by the implementations of the POSIX functions. The runtime structure is defined as:

Listing 20: Runtime data structure.

1 struct PosixLayer {
2 struct NetworkConfig net_config;
3 struct Failures failures;
4 struct ProcessInfo info;
5 struct PosixDescriptor descriptors[MAX_KLEE_FDS];
6 struct NetStackSocket sockets[MAX_KLEE_SOCKETS];
7 struct FileSystemHandle handles[MAX_KLEE_FILE_HANDLES];
8 struct FileSystemData files[MAX_KLEE_FILES];
9 struct FileSystemData symFiles[MAX_KLEE_SYM_FILES];

10 };
11
12 struct PosixDescriptor {
13 int fd;
14 struct NetStackSocket* socket;
15 struct FileSystemHandle* file;
16 };
17
18 struct ProcessInfo {
19 mode_t umask;
20 uid_t uid;
21 gid_t gid;
22 char* cwd;
23 };
24
25 struct NetworkConfig {
26 // Packer Ordering
27 size_t reorder_count, reorder_window_size;
28 // Packet Loss
29 size_t lost_packet_count;
30 // Packet Corruption
31 size_t corrupt_packet_count;
32 size_t corrupt_data_offset, corrupt_data_size;
33 };

In order to illustrate the simplicity of implementation of most high level POSIX APIs,
Listing 21 shows the complete code for write(). Firstly, on line 2 we try to find an entry
for the file descriptor that was passed. If no valid entry was found, an error is returned (lines
3-5). Lines 8-12 can be ignored as they are related to the failure model and only inject a failure.
Finally, lines 15-18 appropriately route the request either to send() if it is a socket or to our
internal filesystem if it is a file.

Listing 21: Implementation of write()

1 ssize_t write(int fd, const void *buf, size_t count) {
2 struct PosixDescriptor* descriptor = posix_layer_find_descriptor_for_fd(fd);
3 if(descriptor == NULL) {
4 errno = EBADF;
5 return -1;
6 }
7

77

8 int fail = klee_int("write:fail");
9 if(posix_layer.failures.maximum_failures && fail) {

10 --posix_layer.failures.maximum_failures;
11 errno = EIO;
12 return -1;
13 }
14
15 if(descriptor->socket)
16 return send(fd, buf, count, 0);
17 else if(descriptor->file)
18 return filesystem_handle_write(descriptor->file, buf, count);
19
20 errno = EBADF;
21 return -1;
22 }

Finally, during initialisation of the simulation, our system automatically inserts a function
call to our own initialisation function in the user defined main() function. The initialisation
function has two roles: to initialise all data structures shown in Listing 20 with appropriate
initial values (this includes setting up stdin, stdout, etc.) and to parse the command line
arguments for any options – any command line switches that it recognised, are removed which
the user main() function would not receive. Listing 22 shows the code for the function. Line
1 initialises all structures defined in 20. We implemented our own way of specifying arguments,
as shown by lines 4-10. The function call on line 13 parses the argument specification passed
and appropriately removes any recognised arguments.

Listing 22: Initialisation of the runtime environment.

1 void klee_init_env(int* argcPtr, char*** argvPtr) {
2 posix_layer_init();
3
4 struct Argument args[6];
5 UNSIGNED_ARG(args, 0, "--max-sys-fail", &posix_layer.failures.maximum_failures

);
6 FLAG_ARG(args, 1, "--open-errno", 0, &posix_layer.failures.flags);
7 UNSIGNED_ARG(args, 2, "--socket-block-interval", &posix_layer.failures.

socket_block_interval);
8 FLAG_ARG(args, 3, "--chdir-errno", 1, &posix_layer.failures.flags);
9 UNSIGNED_ARG(args, 4, "--select-fail-interval", &posix_layer.failures.

select_fail_interval);
10 FLAG_ARG(args, 5, "--fstat-sym-time", 2, &posix_layer.failures.flags);
11
12 int count = sizeof(args) / sizeof(args[0]);
13 parse_arguments(args, count, argcPtr, argvPtr);
14 }

7.4 Summary

Starting with the system itself, we described the necessary changes we had to make to accommo-
date a modified world model. We also took a look at how the event system works and reviewed
the algorithm which ensures the preservation of world separation semantics. Afterwards, an
efficient implementation of a process scheduler was presented. We also touched on the topic of
how the invariants framework works which lets processes expose data for verification purposes.

After covering the changes to the system, we turned our attention to the runtime, which gets
loaded during initialisation. In particular, we provided a review of the special primitive functions

78

that were necessary to implement the POSIX APIs. Subsequently, we looked into the specifics
of implementing the sockets APIs while providing implementations of accept(), connect()
and select() amongst others. We reviewed how the filesystem works and provided the details
behind the most important function which handles the opening of paths. Then we showed how
easy it is to inject failures into system calls. Lastly, we revealed how the POSIX data structures
get initialised at the beginning and how the various runtime subsystems fit together.

79

8 Evaluation

One of the most important aspects in the life cycle of any project is evaluation. It is important
to appraise the performance of the system and to take a step back in order to reflect on the
lessons learned. In the rest of this section, we will take a look at both real-world scenarios as
well synthetic ones. We will also cover any limitations that our system possesses and reflect on
their effects on the overall utility of the software.

8.1 Goals and Methodology

In this section, we try quantify the following metrics:

• Performance on real-world software

One of the major goals of this project was to investigate the ability to find bugs and im-
prove the quality of software. Thus it is very important to try to evaluate its performance
on a piece of software that is being used in a production environment.

The main reason is that non-synthetic software usually has a much higher complexity and
consequently will push the bounds a lot further. It will also provide us with a set of core
functionality that is very likely to be used across all distributed software.

• Capabilities of the invariants framework

We have seen an exponential growth in network-connected software and it is an absolute
certainty that its proportion will only be increasing. Unfortunately, current software
systems have grown significantly more complex over the past decade, especially in terms
of internal states. It is very important to be able to analyse how systems interact with each
other, as in certain cases correctness cannot be evaluated only based on local information.

The invariants framework tries to solve that problem by providing the ability to write
invariants over the global “world” state. It makes it possible to catch logical errors – even
though systems might not crash, they can still have faults with grave consequences.

• Class of bugs that can be discovered

Computer networks provide a certain set of guarantees about delivery of packets, data
corruption detection and various other facilities. In most cases, networks behave without
many errors and the code paths that result from failures are usually not thoroughly tested
– one of the main contributing factors is the lack of ease in setting up a testing environment
that simulates those failures.

Furthermore, the number of failure combinations is so high that it is virtually impossible
to be absolutely certain that certain cases would not have been missed. Symbolically
executing networked software and injecting such failures provides an easy way to explore
the behaviour of the code under such circumstances, and, hopefully reveal issues.

• Synthetic performance

Another aspect that we want to cover is the absolute limits of our system. Pushing
the system to its absolute boundaries until it breaks down gives us an indication of how
practical it would be if we wanted to use it to test other pieces of software.

Lastly, we will cover any limitations of the system, both inherited from KLEE and any
additional ones.

80

8.1.1 Test Configurations

We provide all the necessary details to reproduce the tests described in this section in Appendix
A.

8.2 Boa Web Server

In order to evaluate the real-world performance of our system, we used the Boa web server.
Some of the main reasons it was chosen for evaluation were:

• Production Use

As previously outlined, it is essential to evaluate the performance of the system on real-
world software. Boa is most notably used by two very large websites to serve images –
Slashdot3 and Fotolog4. Fotolog on its own has more 30 million registered users.

• Stability

The Boa web server is an old piece of software – initially written in 1995, it has had some
16 years to mature. Given that it is a minimalistic web server, we would expect it to be
virtually bug free. If some bugs were to be found, it would serve as a good indication that
symbolically executing other distributed software should yield results.

• Simplicity

Furthermore, its minimalistic feature set has a knock-on effect on the code – it is simple
and easy to understand. This has proven very useful in allowing us to more carefully
understand the performance of our system.

• Written in C

Crucially, it is only written in C (and using the POSIX standard APIs) which means that
we can easily run it under KLEE.

• Web Server

Even though it is a minimalistic and small server, it actually depends on a very large
amount of system APIs to work correctly. For example, it deals with the filesystem,
the network and the OS. This means that in order for us to even process a simple GET
request, all of those APIs have to be correctly implemented by our software such that
they honour the semantics as mandated by the standard. In essence, the POSIX API
utilisation footprint of a web server is very high.

• Symbolic Data

Testing a web server allows us to easily quantify how symbolic input affects code coverage
– the behaviour of a web server is, by and large, dependent on the requests it receives.
Thus, we can measure the effectiveness of our system by varying the amount of symbolic
data in HTTP requests.

3http://slashdot.org
4http://fotolog.com

81

8.2.1 Code Coverage

There are a variety of ways to measure code coverage and consequently it is essential to specify
exactly what is being measured and how.

The way code coverage is generally measured when testing software with KLEE is as follows:

• Test the program using KLEE which would generate test files.

• Recompile the software under test with gcov support.

• Run the software natively guided by the generated tests.

• Analyse the coverage as reported by gcov.

Instead of following the above method, we take a different approach. We will be measuring
the code coverage of the LLVM bitcode that KLEE runs symbolically. The reasons for taking
the aforementioned approach include:

• Replay Framework

Due to a limitation of the distributed replay framework, our system will currently generate
test cases that cannot be replayed by running the software under test natively. We will
provide further details about this limitation at the end of this section.

• Selective Coverage

Due to limitations in KLEE, such as the inability to use the fork() system call, there
are parts of the codebase that are impossible for us to test. We need to able to specify
exactly which functions are to be counted towards the percentage.

We have modified KLEE to accept a list of functions that represent the functions that we
are interested in and it will only track their coverage.

• Multiple Runs

During preliminary testing of the system performance, we noticed an explosion of states
without any increase of coverage. The reason was that the ratio of useful GET requests
to malformed was excruciatingly small – the system was spending a lot of time covering
the same code over and over again. It became obvious that we need to concentrate on
running multiple tests, each exercising a different combination of symbolic characters and
then combining the coverage. We do this by recording which instructions in the relevant
functions have been executed and then running a tool to aggregate all the information.

Code Size Boa’s number of source code lines across its implementation files amounts to 7021
lines (according to sloccount[14]). In terms of LLVM bitcode instructions, after optimisation,
this amounts to 5669 instructions. Of those 5669, we track the coverage for 4761 of them as
only those can in theory be reached by our system. The reasons for not being able to test
approximately 16% of the instructions are covered in Section 8.2.5.

8.2.2 Evaluation Tests

There are four main questions that we set ourselves when evaluating the system performance:

1. What code coverage percentage can be achieved by making non-symbolic HTTP requests?

2. How does making parts of the HTTP request symbolic affect the code coverage?

82

3. What are the costs of making parts symbolics and when does the system break down?

4. What is the effect of the additional facilities provided (failure injection, etc.) on the
performance and coverage?

In order to systematically explore those scenarios, we created a set of test suites, running a
total of 112 different configurations:

• Non-Symbolic A set of 29 test configurations which exercise the web server without any
symbolic data.

• Symbolic A set of 50 test configurations with varying amounts of symbolic characters in
a GET request.

• Constrained Symbolic A set of 31 test configurations which turn on an option to make
the symbolic characters in a GET request to be only printable ASCII characters (in the
range 32 up to 127, inclusive).

• Failure Injected A set of 2 test configurations with failure injection turned on.

In order to gather accurate code coverage percentages, all Boa tests were run optimised
with inlining disabled, because library functions get inlined into the Boa code which lowers the
accuracy of the code coverage that we are interested in. Unless otherwise noted, we report
the aggregate code coverage, that is, across multiple runs of our system as our test suites are
composed of multiple samples.

The test suites were run on Ubuntu 10.10 running in VMware Fusion on a Xeon X5500
(Nehalem-based) clocked at 2.27GHz.

8.2.3 Bugs Found

During our testing, we found 2 critical bugs that result in the web server being rendered inop-
erative. Both bugs are related to the support of directories.

• Bug 1

This bug results in a crash of the web server by trying to dereference a NULL pointer. It
requires 3 conditions to be met:

1. The configuration file should not contain a name for a default directory index.

2. The configuration file should contain a directory list cache path.

3. The client must send a GET request to a directory path.

This results in a strcpy with a NULL second argument causing a segmentation fault. The
bug was discovered by trying out various configurations and sending a symbolic requests
to the web server – one particular code path resulted in requesting a directory.

• Bug 2

During the initialisation stage of the web server, it reads a configuration file which specifies
the root directory and makes it the current working directory via chdir(). During the
processing of a GET request for a directory, the code temporarily changes the current
working directory to the directory being requested and restores it at the end. If a system
call fails while reading the contents of the directory, the function returns early and does
not restore the working directory to the web root. This results in the server failing to
properly serve any further requests.

83

The bug was discovered by turning on failure injection into system calls. The high-level
code flow which performs directory indexing is shown in Listing 23.

Listing 23: Generating a directory index.

1 static int index_directory(request * req, char *dest_filename)
2 {
3 if (chdir(req->pathname) == -1) {
4 ...
5 return -1;
6 }
7
8 request_dir = opendir(".");
9 if (request_dir == NULL) {

10 // early return without restoring server root
11 return -1;
12 }
13
14 fdstream = fopen(dest_filename, "w");
15 if (fdstream == NULL) {
16 // early return without restoring server root
17 return -1;
18 }
19
20 ...
21
22 closedir(request_dir);
23 chdir(server_root);
24
25 return 0; /* success */
26 }

8.2.4 Results

We have split the experiments into 4 parts which try to identify various performance character-
istics of the system:

• No Symbolic Data In these tests, our goal was to explore the behaviour of the system
without any symbolic data.

• Symbolic Data In these tests, we investigate what effects symbolic data has on various
aspects of the system, namely code coverage, time, number of processes and memory
usage.

• Symbolic Constraining In this part we investigate how constraining the symbolic input
affects the code coverage and resource usage.

• Failure Injection Finally, we look at system call failure injection and the ramifications
of its use.

No Symbolic Data We handcrafted a set of 29 HTTP (section A.1.1) requests that were
designed to maximise the code coverage. We managed to a achieve an aggregate code coverage,
on the functions that are theoretically testable, of 65.01%. Turning on failure injection of
maximum 1 failure increases that number to 67.93%.

The specific HTTP requests were selected incrementally in such a way as to cover all reach-
able code paths only by varying the HTTP request. At each step, we would analyse the results

84

of the previous runs and increase the set of requests so that we force Boa to follow the remain-
ing unexplored code paths. We look at the reasons why we can only achieve such a seemingly
low-number in Section 8.2.5.

There are two very important consequences of this test result. Firstly, it provides us with
an upper bound on the coverage for any HTTP request that can be constructed as we ensured
maximum possible coverage by only varying the requests. Secondly, it also provides us with
upper bounds for certain types of requests by only selecting the subset that matches the types
of requests.

Symbolic Data In this test, we try to quantify the effects of symbolic data on the code
coverage and its associated costs. We chose one GET request that is capable of covering multiple
code paths if we made parts of it symbolic. The characters that were potential candidates (a
total of 11) for being marked as symbolic are underlined – GET /sym1.html HTTP/1.1\r\n\r\n.

A very important fact that needs to be highlighted is that this request can only ever
succeeds in two ways – when the URI is /sym1.html or /sym2.html. Any other combinations
would make the URI either malformed or it would request a non-existent file. The reason
for choosing those specific positions is that the requests will internally fail in different ways
depending on the position of the malformed character. For example, marking the first character
as symbolic would produce failures due to an unrecognised HTTP method while marking the
HTTP version as symbolic would result in the code which checks the HTTP version to return
an error. From the point of view of the client, the invalid position of the character does not
make a difference, although the different ways to fail should manifest themselves as higher code
coverage.

Upper Bound We can compute an approximate upper bound for a simple GET request
(i.e., without any request options) by running all simple GET requests from our suite of hand-
crafted 29 – it contains a total of 16 such requests. The aggregate code coverage of those 16
requests is 51.46% – more importantly, this provides an approximate upper bound for
any instantiation of the symbolic characters in the request. This is the case because any instan-
tiation of the symbolic characters would either be a malformed request or a valid one for one of
the two files (sym1.html and sym2.html) and the 16 requests explore all possible ways for
a simple GET request to fail and it also include requests to both sym1.html and sym2.html
(requests #19, #20 and #21 in section A.1.1).

Methodology We performed tests to explore the system behaviour with 0, 1, 2 and 3
symbolic characters. The natural question arises how do we choose which positions to mark as
symbolic – for 0 and 1, we can afford to test all combinations (for 0 we have only 1 possible
combination, i.e., the get request without any symbolic data and for 1 symbolic characters we
can try all 11 positions). For 3 symbolic characters, we have 165 combinations (

(11
3

)
). Testing all

of them instead of a random sample cannot significantly decrease our results due to a property
of our test scenario – increasing the number of symbolic inputs (1 versus 2 versus 3 etc.) can
only increase aggregate coverage by very small amounts.

It is crucial to realise why that is indeed the case – we can think of increasing the symbolic
input size as increasing the number of requests sent. For example, if we made the first character
symbolic, we can think of it as testing the behaviour of the server under 256 GET requests. 255
of them would be malformed and 1 would result in a 200 OK response. Now, if we made the T
in HTTP symbolic, we can think of it as sending 65536 different requests – of those, exactly one
will return 200 OK, 255 would start with a G but not have a T in HTTP, another 255 would
have a T but not start with a G and the rest (65025) would not start with a G and not have

85

a T in HTTP. It is essential to realise that in terms of code paths, the case with 2 symbolic
characters would explore 4 logical cases: succeeding, failing due to the G, failing due to the
T and failing due to both the G and the T. But since we run all possible combinations for 1
symbolic character, it will cover all code cases except the last one (remember that we care
about aggregate coverage). But in practice, in Boa there is not much code that has different
behaviour if there are 2 unexpected characters instead of 1 – most functions would return a
failure as soon as they detect an error, as the presence of more errors, does not generally, alter
the outcome.

We can summarise the above as: the aggregate coverage can only increase for con-
figurations with more symbolic characters if, and only if, the additional degree of
freedom enables the execution of code paths that were previously impossible to
reach. When it comes to Boa and the specific GET request, there is exactly one such case
when we consider the case from going from 1 symbolic character to 2 symbolic characters – the
reason why we know about it is because as part of handcrafting the 29 non-symbolic requests,
we acquired intimate knowledge of how to exercise all possible code paths. The case arrises
when requesting an empty file since the response depends on whether the HTTP version is 1.1
or 1.0 – so we require at least 2 symbolic characters in order to have the URI be /sym2.html
and the HTTP version be 1.0, as this requires two changes to the GET request that we chose
for our test.

In summary, we choose 20 random combinations to form our samples for symbolic inputs of
sizes 2 and 3. We will firstly analyse the results of the coverage, as it the focal point of those
tests and then take a look at the resources used.

Code Coverage We present the code coverage results below. We report both aggregate
and maximum metrics.

0

15

30

45

60

0 1 2 3

C
o

ve
ra

g
e
 (
%

)

Symbolic Characters

Aggregate Maximum

Figure 30: Showing what effect marking parts of a GET request as symbolic has on code
coverage.

86

Sym Chars Agg (%) Max (%)

0 40.83 40.83

1 50.89 46.19

2 51.38 48.27

3 50.39 49.13

Figure 31: Showing what effect marking parts of a GET request as symbolic has on code
coverage.

From Figure 31, we can see that making a single character symbolic has the greatest effect
on the code coverage – the aggregate coverage increases by 24.6% between 0 and 1 symbolic
characters. Most of the aggregate coverage increase would be due to different ways to fail the
request. The aggregate coverage increases slightly between 1 and 2 characters – this means that
there is some code path that cannot be traversed using only 1 symbolic character. When we
increase the number of characters to 3, we see a decrease in aggregate coverage – this can be
caused due to our sampling, as we do not cover all possible 165 combinations for 3 characters.

Another point of interest is the increase of the coverage each test configuration achieves on
its own (Max column) – it confirms the intuition that more symbolic characters should result
in exploring more code paths in a single run.

Note the absolute difference between the maximum and aggregate metrics for 1, 2 and 3
symbolic characters (4.7%, 3.11% and 1.26%) – the more symbolic characters we have, the
more degrees of freedom each single test configuration has and consequently a single run can
explore many more code paths on its own when compared to the aggregate of all runs. This is
exactly what we would expect from increasing the symbolic input size and comparing it to the
aggregate.

Most importantly, using 2 symbolic characters, we achieved a code coverage of 51.38% which
represents 99.8% of our approximate upper bound of 51.46% computed on page 85. Next, we
look at the resource usage profile of our system for the different number of characters. When it
comes to resource usage, we are interested in worst-case numbers, so the following graphs and
tables show the maximum values across all runs.

0

75

150

225

300

0 1 2 3

M
e
m

o
ry

 (
M

iB
)

Symbolic Characters

(a) Memory Usage

0

500

1000

1500

2000

0 1 2 3

T
im

e
 (
s)

Symbolic Characters

(b) Run Time

0

175

350

525

700

0 1 2 3

P
ro

c
e
ss

e
s

Symbolic Characters

(c) Processes

Figure 32: Showing what effect marking parts of a GET request as symbolic has on resource
usage.

87

Sym Chars Memory (MiB)

0 31.46

1 61.21

2 165.16

3 246.65

(a) Maximum Memory Usage

Sym Chars Time (s)

0 1.16

1 157.79

2 1658.44

3 1813.91

(b) Maximum Run Time

Sym Chars Processes

0 2

1 35

2 442

3 618

(c) Maximum Processes

Figure 33: Showing what effect marking parts of a GET request as symbolic has on resource
usage.

From the data, we can see that increasing the number of symbolic characters leads to linear
increases in memory usage and number of processes. On the other hand, the run time does not
increase significantly once we have 2 or more symbolic characters (an increase of 9.4% when
going from 2 to 3 characters compared to an increase of 951% between 1 and 2 characters).
The reason we identified for the heavy branching (as exemplified by Figure 32c) was due to the
unconstrained nature of the symbolic input. The issue is addressed on page 88.

Fully Symbolic GET Request Before moving on to constraining the input, we run two
tests by marking the whole GET request as symbolic and constraining the maximum amount
of memory to 1.4GiB. In the first case, our tool run for approximately 1hr28mins and achieved
a coverage of 50.45%. The second run lasted 2hr34mins and achieved a coverage of 49.21%.
This represents 98% and 95.6% of our approximate upper bound. It should be noted that those
coverage values were achieved within about 40minutes of running. The code coverage barely
changed for the rest of time. Additionally, this coverage is for each run (not aggregated) and it
is higher than any of the individual maximum coverage values for up to 3 characters.

We believe that with a more advanced scheduler, a fully marked GET request can achieve
our approximate upper bound. The reason why we cannot expect fully marking our example
request to achieve a much higher coverage lies in the fact the specific length of our HTTP
request allows a very small number of valid requests. For example, it is impossible to test the
behaviour of the If-Modified option header as there is no valid HTTP request of the given
size that also contains the aforementioned header.

Symbolic Constraining While investigating the behaviour of Boa when run with symbolic
data, we noticed an abnormal amount of branching even when just the first symbolic character
was marked as symbolic. Upon further investigation, we stumbled upon a while loop that
performed the following check for every single character in the request header.

Listing 24: Checking the request for invalid characters.

1 while (check < (buffer + bytes)) {
2 /* check for illegal characters here
3 * Anything except CR, LF, and US-ASCII - control is legal
4 * We accept tab but don’t do anything special with it.
5 */
6 if (uc != ’\r’ && uc != ’\n’ && uc != ’\t’ && (uc < 32 || uc > 127)) {
7 ...
8 send_r_bad_request(req);
9 return 0;

10 }
11 }

88

With an unconstrained symbolic character, the check will add an additional 5 branches
(since the expression can be true in 1 way and false in 4 ways). More importantly, all branches
except 1 for which the if statement evaluates to false will lead to the sending of the exact same
reply (send_r_bad_request) because \rET, \nET, \tET and xET where x ! = G are all
malformed initial character sequences.

To understand the impact of constraining the characters, we run our samples with 1 and
2 symbolic characters again but instead constrained the symbolic character to be a printable
character (i.e., between 32 and 127). In the graphs and tables below, we report the aggregate
code coverage and the mean values for the number of processes and time taken.

0

12.85

25.7

38.55

51.4

1 2

C
o

ve
ra

g
e
 (
%

)

Symbolic Characters

Unconstrained Constrained

(a) Aggregate Code Coverage

0

50

100

150

200

1 Character 2 Characters
P

ro
c
e
ss

e
s

Symbolic Characters

Unconstrained Constrained

(b) Processes

0

100

200

300

400

1 Character 2 Characters

T
im

e
 (
s)

Symbolic Characters

Unconstrained Constrained

(c) Time

Figure 34: Showing the effect of constraining symbolic characters to be in the printable character
range.

89

Symbolic Chars Unconstrained Coverage (%) Constrained Coverage (%)

1 50.89 50.64

2 51.38 51.12

Figure 35: Showing how code coverage changes when constraining the symbolic input.

Symbolic Chars Unconstrained Processes Constrained Processes

1 20.5 12.8

2 156.7 83.3

Figure 36: Showing how the number of processes changes when constraining the symbolic input.

Symbolic Chars Unconstrained Time (s) Constrained Time (s)

1 53.2 47.2

2 387.0 176.8

Figure 37: Showing how the time changes when constraining the symbolic input.

As can be seen, constraining the value provides great resource savings at virtually no expense
in the aggregate coverage – it decreased, on average, by 0.5% while the number of processes
decreased, on average, by 42.2% and time, on average, by 32.8%. The only caveat of using
symbolic constraining is the need for domain-specific knowledge of exactly how to constrain the
symbolic network packets.

Failure Injection Injecting failure into system calls is a way to explore code paths that would
not be otherwise reached during normal execution. Failure injection works by exploring the case
where a system call succeeds and also fails. Interestingly, there are cases where the error (as
specified by errno) matters – not only do we have to explore the failure of the open() system
calls but if we want to make Boa return an HTTP code 403 (Access Forbidden), we have to
set errno to EACCES while on the other hand, returning ENOENT would result in a 404 (Not
Found).

As previously explained, the user can specify the maximum number of system call failures
along each execution path. This creates an exponential increase of states depending on the
number of system calls made. In our testing, failing 2 system calls resulted in significant
increases of memory and CPU usage – it is easy to see why. Assume that there are 30 system
calls made during the run. If we allow up to 2 failures, that means that we will explore both
paths having 1 failure, 2 failures or no failures. Thus we will have

(30
2

)
+

(30
1

)
= 465 branches. It

should be noted that 30 system calls is completely unrealistic for a piece of software like a web
server and that the above calculation is only for a single state – not including multiple nodes
in the network that we are simulating.

In order to get a feel of the real world performance of system failures, we run the same
request used in our previous tests with system call failures set to 1 and subsequently to 2.

90

0

12.5

25

37.5

50

0 1 2

C
o

ve
ra

g
e
 (
%

)

Syscall Failures

(a) Code Coverage

0

200

400

600

800

0 1 2

Ti
m

e
(s

)

Syscall Failures

(b) Run Time

0

375

750

1125

1500

0 1 2

M
e
m

o
ry

 (
M

iB
)

Syscall Failures

(c) Memory Usage

0

750

1500

2250

3000

0 1 2

P
ro

c
e
ss

e
s

Syscall Failures

(d) Processes

Figure 38: Showing what effect injecting system call failures has on code coverage in 38a, on
run time in 38b, on the memory used in 38c and the number of processes in 38d.

Failures Code Coverage (%) Memory (MiB) Processes Time (s)

0 40.83 31.5 2 1.2

1 45.66 38.4 177 11.6

2 45.7 1143.9 2792 732.9

Figure 39: Showing metrics for different amounts of system call failures.

The staggering increase in the resources used when failing 2 system calls is clearly evident –
memory increases by 2879%, processes by 1477% and time by 6218%. It is also reasonable if we
consider what the program is doing – if a system call fails during the processing of an HTTP
request, it will return an error to the client. The only additional code coverage that can be
expected from failing more than 1 system call is code whose behaviour is dependent on multiple
failures. In Boa, the increase is roughly 0.04% which would imply somewhere between 1 or 2
LLVM instructions. On the other hand, injecting 1 system call failure increases the coverage
by 11.2% compared with no automatically induced failures. The costs of 1 system call failure
are reasonable for the amount of coverage increase. In conclusion, injecting 2 or more failures
would generally result in no increase of the final code coverage by any significant amounts and
would be very costly in terms of system resources. On the other hand, injecting a single system

91

call failure can provide substantial increases – even more so in software that deals with a lot of
error conditions.

8.2.5 Untestable Code

Even though Boa has a minimal feature set, there were parts of the code base that we did not
test. We can split the untestable parts into two broad categories depending on the reason why
there were untested:

1. Impossible to test due to inherent limitations in the our system (mainly un-modelled /
unsupported APIs)

2. Code that we could not reach by varying the HTTP request

The list below provides an overview of the parts that are impossible to test due to limitations.
Unless otherwise noted, the limitations can be overcome by implementing support for missing
features by extending KLEE.

• CGI / Scripts

In order to execute CGI scripts, the web server depends on the availability of the fork()
system call which is currently unsupported.

• Process Signals

KLEE’s model assumes the simulation of a single process and consequently, process signals
are unsupported.

• Memory-mapped File I/O

Boa has multiple ways to read files that it needs to serve and one of the fastest ways is
mmap()ing them. Currently, there is no support for the mmap() system call. It should
be noted that implementing support would require changes in both the runtime and the
system itself. The reason is that, usually, the runtime handles the filesystem but in order
to efficiently implement mmap(), it would need to able to trap any memory reads / writes
– and the “kernel” in this case is software itself.

• Process Pipes

This is closely related to fork()ing processes and connecting their standard streams.
This functionality is required by Boa to execute CGI scripts.

• OS User Interaction

The web server needs the ability to find out the user groups during initialisation and give
up its privileges if it is running as root. The OS user system is currently not modelled.

• Network Properties

In real networks, the arrival and transfer rates of packets is non-deterministic. When
running under our system, transfers are instant and TCP traffic does not get fragmented.
As there is a very large number of possible fragmentations, naively simulating all of them
is impractical. There is no general solution to the problem and currently, we exercise parts
depending on the timing by inserting sleep() calls into the client.

92

• Hardware Limits

Boa has code that deals with exceptional circumstances, like reaching the maximum num-
ber of connections. Those portions of the code base are not very easy to get triggered and
would require a specific scheduler that can accept hints from the system on how to drive
the execution.

• Malloc failures

Currently, malloc() failures are not simulated.

In addition to code that we could not test due to missing features, there were parts that we
should, theoretically, be able to hit but we did not. The reasons are outlined below.

• Debug Functions

Boa includes debug functions that are used while developing. In normal builds, there are
no function calls to them and as such we excluded them from the list of functions that
are included in the coverage metric.

• Unused Functions

There are also functions that were unused for several reasons – some functions were unused
because they were still being worked on, others because they were deprecated internally
but not removed from the code base and some were meant for future use. All of those
were excluded from our code coverage metric.

• Server Configuration

The server’s behaviour is also highly dependent on the configuration. Thus, achieving
higher coverage necessitates the testing of the server under various configuration. It also
requires domain specific knowledge about which parts of the configuration have the biggest
impact on code coverage.

There are several ways to attack the problem. One would to be test multiple configurations
over separate runs – although while this is certainly practical, it is a very inefficient way
to go about it.

Alternatively, one might try to mark parts of the configuration as symbolic. Unfortunately,
this is an even less efficient way to explore the possible configurations due to the fact that
the parser compares the file contents against a certain set of known keys (via strcmp). If
we marked a particular 5 byte range as symbolic printable characters, it would be matched
against all possible keys which would end up creating a very large amount of branches,
most of which would not match a well known key.

The approach we take is that we use a single configuration file across all runs. This is
sufficient for our purpose because we are trying to evaluate the effect of symbolic data
contained HTTP requests. The code that depends on different configuration values showed
up in our results as a lower overall code coverage.

• Internal Error Handling

Boa’s functions are written in a very defensive manner (as they should be). We have
observed that the code includes checks for invalid parameters that cannot actually occur
– all the existing places that call those functions, ensure the parameters that are passed
satisfy any preconditions. The only way for us to trigger that code would be to write
additional code that calls Boa’s internal functions with invalid values. As the aim of the

93

test is to evaluate the effects of symbolic HTTP requests, we have ignored this issue. This
appeared in the results as a lower overall code coverage.

• Interleaved Code

As outlined in the list above, there are several features that cannot be tested due to
missing functionality. Some parts of the code that handle such features are mixed with
code for features that we are testing (usually guarded by large if statements). We did not
want to make any significant changes to the code base which might affect its correctness
and thus have left the parts intact. This showed up in our results as a lower code coverage.

8.2.6 Summary

Performing evaluation on Boa has revealed several limitations of our systems and highlighted
the fact that symbolically testing distributed software is a hard problem – approaching it with
brute-force would rarely yield satisfactory results.

Nevertheless, we managed to find find 2 critical bugs in a very well-tested piece of software.
Both of them are related to directories probably because those features not being used as actively
as the others. The software has had about 15 years to mature and it is our belief that this has
contributed to the low number of issues found.

Another important aspect of testing distributed software is the more pronounced problem
of state explosion. This is due to the fact that not only does such software depend on the
filesystem and its arguments, it now depends on the behaviour of the network nodes which it
interacts with. This creates a very large increase in the number of “worlds” that need to be
simulated. This is the reason why we had to split testing into separate cases and run them
concurrently, as opposed to trying to simulate all the cases at the same time in one long run.

One of the reasons for excessive branching in Boa was the parsing of the request – it expects
every character and checks whether it is a valid ASCII printable character or a whitespace
character. Passing a completely unconstrained character actually results in significantly more
processes (74% on average) but almost no increase in coverage (0.5% on average). In essence,
most of the interesting code paths only happen when we have correctly formed HTTP requests.

Finally, a web server usually handles multiple connections at the same time and if we used
symbolic data while processing one of the many requests, we will explore multiple paths. While
semantically correct, the processing of a single client’s request is virtually independent from all
other requests – some web servers process those in separate threads or spawn multiple processes.
This was the reason why we chose to only test a single GET request originating from a single
client.

8.3 Invariants Framework

The invariants framework provides a high level tool to detect bugs at the state level. The
performance of the invariant network is proportional to the rate at which new data is exposed
to the system. In order to evaluate its performance, we wrote a 2-Phase Commit sample program
and explored the behaviour of the program with 5 committers and completely symbolic data
(so we are exploring all possible combinations of votes and decisions). More importantly, the
rate at which data for invariant checking is exposed is extremely high – nevertheless, it provides
us with an upper limit on the performance. During the test, we were simulating a total of 3472
processes across a multitude a worlds. The test concluded in 17 seconds and memory peaked
at 135MiB. The test was run under Intel VTune Amplifier XE and the amount of time spent
evaluating invariants was 5.8% – a total of 1675 invariant violations were detected during the
run.

94

After we found bug #2 in Boa (page 83), we tested the invariants framework by writing an
invariant that expressed the property that the current working directory should be the same
before a request is processed and afterwards. It successfully managed to find the violation.

It is important to note the power that distributed invariants provide – in non-trivial appli-
cations, e.g. implementations of Paxos, the only way to check for correctness is to write checks
over the whole network. As we are using a custom language and syntax, it should be very easy
to customise and extend in order to perfectly suit our future needs.

8.4 Synthetic Scenarios

While testing our system on a production piece of software provides valuable information, it is
important to know what are the classes of bugs that can be discovered. We illustrate 3 scenarios
in distributed programs that will lead to the discovery of issues in the code.

8.4.1 Deadlock via Packet Loss

We have the ability to turn on non-deterministic loss of UDP packets, so that we explore both
scenarios – what happens if the packet gets sent and what happens otherwise. In addition,
KLEE was extended to detect when a “world” has deadlocked – this occurs when all nodes are
blocked in a system call without a timeout.

8.4.2 Fragile Parsing Code

We also have the ability to automatically mark parts of network packets as symbolic without
any source code changes in the program under test. This feature can be effectively used to
find bugs in code that parses network packets – usually, the packets are structured by including
separators or specifying the length of various structures. A symbolic value would effectively
check that the code handles all cases correctly and does not try to blindly follow the contents
of packets. Another way to look at it is from a security point of view – the packets could have
been maliciously crafted to induce a denial of service.

8.4.3 Fault Tolerance

If we couple together the ability to inject failures (e.g., system call failures) and the invariants
framework, we can automatically detect how the software under test handles those failures at the
protocol level. For example, even though the software might not crash, it could be considered
“faulty” due to inconsistent state across the network nodes.

A classic such example is the implementation of a two phase commit. The algorithm is quite
simple and we will illustrate it in the case with 2 committers and one coordinator.

1. Both committers send a decision whether to commit (either yes or no).

2. If a committer’s own decision is no, it can abort immediately and not wait for an answer
from the server.

3. The coordinator waits to receive all votes. If all of them are yes, it sends yes to all
committers, otherwise sends no.

4. If a committer does not receive the decision from the server within a certain timeout, it
decides abort.

95

The invariant across all committers should be that they all decide the same value - either
all of them decide yes or all of them decide no. Unfortunately, there is a case that can lead to
the violation of that invariant.

1. Both committers send yes to the coordinator.

2. The coordinator only manages to send yes to the first committer.

In this case, the first committer will decide yes while the second will decide no. This is
easily induced and detected by our system by enabling the failure of system calls and using the
invariants framework. Note that this can also be viewed as the coordinator crashing after the
first send (because from the point of view of the second committer, the coordinator has stopped
responding).

8.5 Scalability

In order to assess limits of the system, we designed a set of synthetic tests that exercises various
aspects of the system. An implementation of an echo server and client were written which could
be configured to send a varying number of 4KiB UDP packets. In the following tests, we show
the data from all the runs without any aggregation as their number was small enough to not
require aggregation.

Deadlock Detection In order to determine the impact deadlock detection, we choose three
particular runs of Boa that had varying amounts of processes. We run each test twice – once
with deadlock detection turned on and then turned off. The memory usage in each case is shown
below.

0

30

60

90

120

593 842 1130

M
e
m

o
ry

 (
M

iB
)

Processes

With Detection Without Detection

Figure 40: Showing how the number of processes affects the benefits of deadlock detection.

Branches With Detection (MiB) Without Detection (MiB)

593 57.4 86.4

842 54.4 95.8

1130 57.9 113.1

Figure 41: Showing how the number of processes and deadlock detection affects memory usage.

96

Deadlock detection can be seen to provide significant benefits when it comes to memory
usage – in this case, the memory usage remains relatively constant when deadlock detection
is turned on, while on the other hand, memory usage grows significantly with the number of
branches / processes.

Network Size In this test, we use an echo server and send the same amount of data (32KiB
each way) using different number of clients. For example, in one run, 1 client sends 128 packets
of length 256 bytes. In the final run, 128 clients in the same subnet each send 1 packet of size
256 bytes.

0

10

20

30

40

1 2 4 8 16 32 64 128

T
im

e
 (
s)

Network Size

(a) Network Size & Run time

0

10

20

30

40

1 2 4 8 16 32 64 128

M
e
m

o
ry

 (
M

iB
)

Network Size

(b) Network Size & Memory

Figure 42: Showing the memory usage and run time when transferring a total of 64KiB (32KiB
each way) using a varying number of echo clients.

Network Size Time (s) Memory (MiB)

1 4.5 24.5

2 5.1 24.8

4 5.0 24.8

8 5.0 25.3

16 5.4 26.0

32 6.6 27.3

64 12.0 30.4

128 33.5 36.6

Figure 43: Showing the effect the size of the network has on run time and memory usage.

From the results, we can see that up to network sizes with 32 nodes, the increase in memory
usage and run time is insignificant – for example, increasing the size from 1 node to 8 nodes
results only in a approximately 10% increase in run time. On the other hand, doubling from 64
to 128 increases the time by almost 180%.

Packet Loss In this test, we aim to quantify the cost of packet loss. We run the echo program
with varying number of clients and varying amounts of packet losses – specifically, we tested the
effect of packet loss for 1, 2, 3 and 5 clients where each client sends 3 packets. The increase in

97

resource usage for 5 clients is so much larger than the rest that we had to separate the graphs
as otherwise the bars for 1, 2 and 3 clients would be invisible.

0

2.5

5

7.5

10

1 2 3

T
im

e
 (
s)

Clients

No Loss 1 Loss 2 Losses 3 Losses

(a) Packet Loss & Time

0

375

750

1125

1500

5

T
im

e
 (
s)

Clients

No Loss 1 Loss 2 Losses 3 Losses

(b) Packet Loss & Time

Figure 44: Showing how the run time (in seconds) varies with the number of clients and number
of packets lost.

23

24.5

26

27.5

29

1 2 3

M
e
m

o
ry

 (
M

iB
)

Clients

No Loss 1 Loss 2 Losses 3 Losses

(a) Packet Loss & Time

0

50

100

150

200

5

M
e
m

o
ry

 (
M

iB
)

Clients

No Loss 1 Loss 2 Losses 3 Losses

(b) Packet Loss & Time

Figure 45: Showing how the memory usage (in MiB) varies with the number of clients and
number of packets lost.

98

0

125

250

375

500

1 2 3

P
ro

c
e
ss

e
s

Clients

No Loss 1 Loss 2 Losses 3 Losses

(a) Packet Loss & Time

0

7500

15000

22500

30000

5

P
ro

c
e
ss

e
s

Clients

No Loss 1 Loss 2 Losses 3 Losses

(b) Packet Loss & Time

Figure 46: Showing how the number of processes varies with the number of clients and number
of packets lost.

Clients No Loss 1 Packet Loss 2 Packet Loss 3 Packet Loss

1 0.3 0.3 0.3 0.4

2 0.5 1.17 1.2 1.3

3 0.6 6.9 8.3 9.2

5 0.9 401.0 801.7 1010.8

Figure 47: Showing how the run time varies with the number of clients and number of packets
lost.

Clients No Loss 1 Packet Loss 2 Packet Loss 3 Packet Loss

1 23.7 23.7 23.7 27.7

2 23.9 24.7 24.7 24.7

3 23.9 27.8 28.1 27.8

5 24.2 93.1 138.3 161.6

Figure 48: Showing how the memory usage varies with the number of clients and number of
packets lost.

Clients No Loss 1 Packet Loss 2 Packet Loss 3 Packet Loss

1 2 8 8 8

2 3 59 68 68

3 4 344 469 500

5 6 9940 18917 24510

Figure 49: Showing how the number of processes varies with the number of clients and number
of packets lost.

The results shown above clearly demonstrate the high cost associated with exploring large
amounts of packet loss – the number of processes with 5 clients and 3 packet losses is a staggering
24510. Consequently, using packet loss should be restricted to small number of packets or smaller
network setups.

99

Symbolic Communication The goal of this test is to quantify the effects of excessive sym-
bolic communication. We use the echo program to send 3 packets of data while varying the
network size. In this particular setup, the server will try to match the received data (using a
call to memcmp) against a set of predefined values. We run both tests twice – once sending
concrete data and once sending completely symbolic packets.

0

37.5

75

112.5

150

1 2 5 10 20 50

T
im

e
 (
s)

Clients

Concrete Symbolic

(a) Symbolic Communication & Time

0

22.5

45

67.5

90

1 2 5 10 20 50

M
e
m

o
ry

 (
M

iB
)

Clients

Concrete Symbolic

(b) Symbolic Communication & Memory

0

250

500

750

1000

1 2 5 10 20 50

P
ro
c
e
ss
e
s

Clients

Concrete Symbolic

(c) Symbolic Communication & Processes

Figure 50: Showing the effects of symbolic network communication.

Clients Time/C Time/S Mem/C Mem/S Procs/C Procs/S

1 0.32 2.0 23.5 25.3 2 36

2 0.4 4.1 23.7 26.8 3 54

5 0.8 10.4 24.0 30.4 6 108

10 1.57 21.62 24.8 35.8 11 198

20 3.06 44.4 26.0 46.9 21 378

50 10.1 123.9 29.7 81.8 51 918

Figure 51: Showing the effect of network communication when using symbolic data. C stands
for Concrete while S for Symbolic. Time is shown in seconds while memory is shown in MiB.

We can see from the graphs that excessive symbolic communication has significant costs on
the run time and the number of processes, especially for larger networks. On the other hand,
memory usage does not grow as fast as the run time and process count, mainly due to deadlock

100

detection.

Filesystem Transfer Rate In this test, we investigated how our system performs when
reading OS-backed files. We read increasingly large files in a loop, each time reading 4KiB of
data and then discarding it. This setup would reveal the cost of open()ing the OS-backed
file every time we need to read it which is done to prevent exhaustion of file descriptors due to
heavy branching of processes which subsequently perform file operations.

0

7.5

15

22.5

30

4 KiB 128 KiB 1 MiB 10 MiB 40 MiB

Ti
m

e
(s

)

File Size

(a) Packet Loss & Time

0

7.5

15

22.5

30

4 KiB 128 KiB 1 MiB 10 MiB 40 MiB
M

e
m

o
ry

 (
M

iB
)

File Size

(b) Packet Loss & Memory

0

750

1500

2250

3000

4 KiB 128 KiB 1 MiB 10 MiB 40 MiB

Tr
an

sf
er

 R
at

e
(K

iB
/s

)

File Size

(c) Packet Loss & Rate

Figure 52: Showing the performance of reading files of varying sizes.

File Size Time (s) Memory (MiB) Rate (KiB/s)

4 KiB 0.2 19.1 16.7

64 KiB 0.3 19.2 246.2

128 KiB 0.3 19.1 400.0

512 KiB 0.5 19.1 1003.9

1 MiB 0.7 19.1 1442.3

5 MiB 2.5 19.4 2015.7

10 MiB 4.7 19.7 2164.9

20 MiB 9.1 19.9 2238.3

40 MiB 18.3 20.7 2234.6

50 MiB 22.8 21.2 2248.6

Figure 53: Showing the effect of reading files of varying sizes on the system performance.

101

We can infer a few interesting facts from the graphs. Firstly, as expected, reading larger
files takes longer as shown by Figure 52a. The fact that memory usage stays almost constant
throughout all runs, as shown by Figure 52b is a good indication that we are not inadvertently
wasting resources. Most interestingly, Figure 52c tells us that the file transfer rate from the OS
effectively peaks for files larger than 5 MiB.

Network Transfer Rate In this test, we wanted to estimate the costs of transferring large
amounts of data in small packets. We transfer 1, 2 and 4 MiB in 256 byte packets and record
the time used so that we can calculate an effective rate.

0

150

300

450

600

1 MiB 2 MiB 4 MiB

Ti
m

e
(s

)

Data Size

(a) Packet Loss & Time

0

2

4

6

8

1 MiB 2 MiB 4 MiB

K
iB

/s

Data Size

(b) Packet Loss & Time

Figure 54: Showing the effect of transferring large amounts of small data packets across the
network.

Data Size (# of Packets) Time (s) Rate (KiB/s)

1 MiB (4096) 139.5 7.3

2 MiB (8192) 285.8 7.2

4 MiB (16384) 536.0 7.6

Figure 55: Showing the effect of transferring large amounts of small data packets across the
network.

As expected, the time taken is linearly proportional to the amount of data sent and the rate
of transfer stays fairly constant. It should be noted that the actual transfer rate is quite low –
this can be explained due to the overheads of transferring data over the network which requires
“context switches” between the processes being run symbolically and the system itself.

8.6 Limitations

As every piece of software, our system has a set of limitations that limit its utility. The more
notable ones include:

• Scheduling

As outlined in section 7.2.6, we use a random path scheduler to pick the world to simulate
next (and round-robin within the world of network nodes). This only explores one way
of performing scheduling between network nodes. There is a large array of distributed

102

software whose behaviour depends on the order of networking packets that it receives.
Naively exploring all possible interleavings will further deepen the exponential state ex-
plosion problem and at present, there are no known solutions.

• Single-Thread Single Process

One limitation we inherited from KLEE was the inability to use the fork() system call.
This means that we cannot test any software systems that depend on that functionality.
The solution to the problem would be to model cloning of processes in a way that preserves
all the correct semantics of fork().

• Reproducibility & Non-Determinism

We have three main sources of non-determinism in our system that can cause problems
when trying to reproduce any issues that were discovered.

– Non-determinism inherited from the host OS – e.g., reading from /dev/urandom.
One possible solution to this problem would be to support the recording of non-
deterministic data that the program gets from the OS and make sure the same
data is returned during replay. This can achieved by dynamically instrumenting
the programs during replay. Pin[10] is a free tool by Intel that allows the easy
instrumentation of processes.

– If we use fault injection, the POSIX functions that we implement become non-
deterministic. Thus in order to replay a test case, we will need to instrument those
functions during the replay process in a similar fashion as described above.

– It is entirely possible that bugs that were discovered depend on the particular schedul-
ing performed by our system. Consequently, the need to follow the exact same
scheduling arises. Solving the problem would involve writing a kernel extension
which guides the scheduling of a certain set of processes as defined by some file. Our
scheduler’s role would then also require the ability to generate files that describe the
decisions it made during simulation.

It is also important to notice one of the reasons state space explosion becomes an even bigger
issues when simulating distributed software. In our system, network nodes are shared and only
branched on-demand in order to meet the semantics of isolation within each possible “world”.
Even with that optimisation, chatty network protocols can results in excessive branching.

More importantly, it is possible that we might be still be branching unnecessarily. For
example, suppose that two nodes (server and client) are communicating and the client branches
into two due to some test on symbolic data. At this point of time, there is only one instance
of the server process. But when one of the branched client tries to send a piece of data to the
server, we need to branch the server as we are exploring two possible worlds. Crucially, it might
be the case that two messages, even though different when compared as a sequence of bytes,
might lead to the exact same execution sequence in the server.

One possible optimisation would be to determine whether that is indeed the case. Unfortu-
nately, performing that check is highly non-trivial – if we just simulated both messages, we are
back to square one and we did not make any savings. Furthermore, it is completely unknown
whether the savings of any such optimisations would outweigh the associated costs.

8.7 Summary

Symbolic execution of distributed software can yield satisfactory results although it is not yet
practical for large-scale programs. Blindly marking network data as symbolic does not automat-
ically translate to achieving higher code coverage in a short amount of time. Domain-specific

103

knowledge of the code under test and the structure of the network traffic can be used to attain
significantly better results.

104

9 Development Methodology

During the development of the project, we were faced with several technical challenges that
influenced our development efforts. In this section, we provide a short overview of the main
issues encountered and any steps we took to mitigate their effects.

9.1 Code Base

KLEE itself is built on top of LLVM and depends on its presence in source form to be able to
compile. In addition, at the time of writing there were incompatibilities between KLEE and
the latest version of LLVM (2.8) which meant that we had to use version 2.7. In addition, even
though the build process is documented fairly well, we still believe it can be made a lot simpler
as we see it as a barrier for people to experiment with the software. The situation improved
right at very end of this project’s timeline when a self-contained package of KLEE and all the
necessary dependencies was made available on the official website.

In addition, the sheer size of the code base presents several challenges – the raw number
of lines of code in KLEE and LLVM combined is close to 200,000 (the vast majority which is
C++). Consequently, there is a very steep learning curve when trying to understand the how
the various subsystems fit in. At times, it was necessary to not only understand the high-level
design but also the intricate implementation details in various components which can become
very time-consuming. On multiple occasions, the implementation of a feature that we deemed
trivial at the conceptual level, turned out disproportionally time-consuming in practice.

On the other hand, it is our feeling that both KLEE and LLVM are well-designed from an
engineering point of view which greatly helped us achieve our planned targets.

9.2 Tools & Language

As engineers, the tools that are available can have a very significant impact on our productivity.
Our complete unfamiliarity with the code base meant that we needed appropriate tools in order
to be effectively working with the code base.

Initially, we started off by using vim with several extensions but it quickly became obvious
that it was not practical with our level of knowledge of the codebase. After researching the
available tools that would allows us to navigate the large codebase effectively, we settled on using
Eclipse with the CDT extension. Overall, coming from a platform which provides an integrated
set of development and performance-related tools, we felt that the development platform can
be significantly improved to allow for a more streamlined and efficient workflow.

KLEE and LLVM are themselves written in C++. Due to the broad feature-set and
paradigm support of the language, there are many ways to perform particular tasks. Most
of the codebase follows the best practices for development in C++ albeit one place that was
inconsistent throughout the code base was the managing of the lifetime of objects. Some places
would use custom reference counting while others would assume implicit ownership of the object
graph in specific ways – the worst part being that the implicit conventions were not documented
which resulted in time spent tracking down the responsibility of managing the lifetime of a par-
ticular object. The number of times we had to debug memory-related issues (most commonly
segmentation faults) was very small and in all cases it was due to either oversights in the lifetime
management or due to undocumented object ownership.

105

9.3 Testing

The complexity of symbolic execution is very high and KLEE deals with many intricate issues
at various levels of abstraction. Thus modifying the behaviour of the system introduces a
possibility of accidentally introducing bugs as a side effect of our changes. More importantly,
one of the worst ways for us to break the system is to introduce subtle issues which lead to
incorrect semantics of execution but does not lead any clearly visible effects for us to notice. It
is of utmost importance for a tool, whose goal is to prove correctness, to be itself correct.

The original creators of KLEE were aware of that fact and provided an extensive suite of
test cases that ensure that the system is operating correctly. It uses DejaGnu as a testing
framework. The testing suite consists of little C programs (usually with a single main()
function) that exercise various aspects of the software and check for the expected behaviour.

The existence of the test suite allowed us to be more confident about any changes that we
were making and provided the freedom to refactor subsystems without fear of indadvertedly
breaking the code. As an internal rule to avoid breakages, we always run the test suite before
committing. In addition to using the test suite provided by KLEE, we had our own set of tests
that we were continuously writing to test the features that we were implementing. Initially,
they were not integrated as part of the build process but subsequently we cleaned them up and
moved them into test suite. One of the challenges we faced when writing our own test cases
was the inability to verify the correct operation of some features, as the verification required
a global access to the states across all processes, which is not available to programs that are
being run symbolically. Overall, throughout the lifetime of the project, the test suite found a
total of 2 regressions. Even though the number is very low, it is very important to realise that if
the test suite was inexistent, we would have introduced issues that we might not have detected
otherwise and which would have directly impacted the operational correctness. In summary,
we added an additional 20 test cases which exercise the additions that we made to the system
for a total final count of 126, while at the same time retaining full backwards compatibility of
the system. It should be noted that those are not unit tests but system tests which check the
behaviour of the whole tool.

9.3.1 Test Example

Listing 25 shows an example of one our tests that check for the correct behaviour of file descriptor
duplication. This particular test exercises many aspects of the filesystem. On line 15, the call to
open() implicitly tests for support for relative pathnames – note that any relative pathnames
are relative to the current process’ working directory and not the working directory of our
system. Line 18 creates a new file descriptor by duplicating an existing one while line 21
replaces the standard output stream with file_1. The file in question contains the data
contents of file_1. Lines 24-28 read the first 8 bytes from the original file descriptor and
compare it against what is expected. Later, on lines 30-33, data is read from the first duplicate
descriptor. Crucially, duplicate file descriptors are defined to share the current offset into the
file which is checked by comparing whether we have read what we expect (line 33). Finally, we
try to read from the standard output stream (line 35-38) and we expect to instead read from
the file since we replaced stdout with file_1 on line 21.

Listing 25: Verifying the correct behaviour of file descriptor duplication.

1 // RUN: %llvmgcc %s -emit-llvm -O0 -c -o %t2.bc
2 // RUN: %klee --distrib-runtime --libc=uclibc --exit-on-error %t2.bc
3
4 #include <string.h>
5 #include <sys/types.h>

106

6 #include <sys/stat.h>
7 #include <fcntl.h>
8 #include <unistd.h>
9 #include <assert.h>

10 #include <stdio.h>
11
12 #define BUF_LEN (128)
13
14 int main(int argc, char* argv[]) {
15 int fd = open("../testing-dir/file_1", O_RDONLY);
16 assert(fd != -1 && "Couldn’t open file_1");
17
18 int dupfd1 = dup(fd);
19 assert(dupfd1 != -1 && "Couldn’t duplicate file descriptor");
20
21 int dupfd2 = dup2(fd, STDOUT_FILENO);
22 assert(dupfd2 != -1 && "Couldn’t duplicate stdout");
23
24 char buf[BUF_LEN];
25 int bytes = read(fd, buf, 8);
26 assert(bytes == 8 && "Couldn’t read the first 8 bytes");
27 buf[bytes] = 0x0;
28 assert(strcmp(buf, "contents") == 0 && "Didn’t read what was expected");
29
30 bytes = read(dupfd1, buf, 4);
31 assert(bytes == 4 && "Couldn’t read the next 4 bytes");
32 buf[bytes] = 0x0;
33 assert(strcmp(buf, " of ") == 0 && "Didn’t read what was expected");
34
35 bytes = read(STDOUT_FILENO, buf, 6);
36 assert(bytes == 6 && "Couldn’t read the next 6 bytes via stdout");
37 buf[bytes] = 0x0;
38 assert(strcmp(buf, "file_1") == 0 && "Didn’t read what was expected");
39
40 return 0;
41 }

107

10 Conclusion

Working on extending KLEE to support the execution of distributed software has been a chal-
lenging and rewarding experience in many different ways. It provided the opportunity to work
on a project that not only presented a challenge from a engineering point of view but also dealt
with a very hard problem – the automatic testing of distributed software via symbolic execution.
Furthermore, it provided the chance to explore the limits of what is practical and theoretically
possible when it comes to providing a testing framework for networked programs.

We faced a variety of challenges throughout the project. The engineering problems that
cropped up throughout the project lifetime highlighted several aspects when it comes down
to producing large software system. For example, when developing software, one of the most
important aspects should be to ensure ease of future maintenance and extension as those two
phases are a certainty in the vast majority of software. In practice, this translates into the
following proper engineering practices and adhering to guidelines which ensure consistency
throughout the codebase. Consistency is desirable, especially more so on large projects, as
it lowers the learning curve and allows faster comprehension of the code base. Furthermore, we
have found that carefully placed comments can be very beneficial – as long as the comments
reveal knowledge that is not clearly apparent to professional engineers. From our experience,
those comments usually reveal invariants and properties about the code at a wider scope and
how it fits with the rest of the structures as opposed to explaining the operations performed by
the code.

The importance of having a testing framework to ensure the quality of software cannot
overstated enough. It also increases the freedom engineers have to restructure the software
without fear of breaking it. Using revision control tools, preferably distributed, provides the
ability to easily backtrack in the cases where regressions have been introduced. It also provides
a complete history of the project and data derived from it can be used for analytical purposes.

In this project, we managed to design and implement, via a set of extensions, a system
which can symbolically execute distributed software. In addition, we provide mechanisms for
automatically injecting low-probability events, such as packet loss and system call failures, which
lead to exploration of rarely taken code paths in the hope of finding bugs. If any issues are
found, we provide a replay framework that allows the reproduction of any bugs found so that
the cause can be localised and rectified. We also introduced a distributed invariants framework
that allows the expression and verification of properties over the states of all participants in a
network. This mechanism enables the ability to find logical errors at a much higher level – for
example, it can check the implementation of specific network protocols.

Even though we made great strides in making symbolic execution of arbitrary distributed
software a reality, it is still out of practical reach for the majority of networked production
software. Achieving reasonable code-coverage requires careful choice of which parts should
be marked as symbolic. If we indiscriminately mark all network traffic as symbolic, the sys-
tem becomes completely overwhelmed with the explosion of states and quickly runs out re-
sources. Furthermore, the usage of the distributed invariants functionality requires domain
specific knowledge about what properties actually hold.

10.1 Future Work

Despite achieving our initially set goals and going beyond, there are still many areas of im-
provement. We outline some ideas for potential extensions.

• Process Persistence

108

In the current implementation, our system keeps all states in memory and there is a
mechanism to avoid running out of memory – either processes can be randomly terminated
or any further branching can be restricted. In both cases, we forcefully stop exploring
certain paths due to resource constraints. One possible solution would be to provide
the ability to persist processes so that they can be offloaded to the disk. Coupled with
the increase use of Solid State Drives, this solution can provide practical benefits in the
exploration of code paths.

• Scheduling

Currently, when it comes to timing and choosing the next process to run, we follow only
a single strategy (round-robin within a world). Providing the mechanisms to vary the
behaviour of the scheduler such that multiple interleavings can be tested without a huge
performance penalty is another interesting area of research.

• Distributed Invariants

Our current implementation of distributed invariants is quite simple – in essence, it pro-
vides the foundation for future work. The ability to have finer control over the timing of
evaluation and extensions to the language are two possible extensions. One way to attack
this would be to pick several larger pieces of software[12] and try to provide any necessary
extensions such that the programs’ invariants can be expressed and tested.

• Network Extensions

Our system does not simulate any properties of the networks themselves, such as delay,
capacity and others. Additions which allow the exploration of the behaviour of software
under different network loads can reveal additional behaviour and possibly reveal issues.
For example, sockets currently have unlimited buffer space – this can easily be changed
so that the behaviour of systems can be tested for proper handling of high transfer rates
where the OS buffers quickly fill up.

• fork() Support

One significant restriction at the moment inherited from KLEE itself is the inability to
use the fork() system calls. Support for fork() would allow the testing of a much
wider variety of networked programs.

• Replay Extensions

The replay framework currently suffers from two main problems: issues found by auto-
matic failure injection cannot be reproduced and non-deterministic sources of data (e.g.,
/dev/urandom). Both of those issues can be fixed by adding support for additional in-
formation to be saved during symbolic simulation and then instrumenting[10] the process
under test when it runs natively so that the behaviour of any system calls matches the
behaviour when run by our system.

• Parallelism

Currently, our system does not take any advantage of parallelism offered by multi-core
processors. In addition, ability to cluster multiple instances in a way that can run in the
cloud could provide the ability to scale enough such that it becomes practical to test much
bigger pieces of software.

109

References

[1] Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX conference on Operating systems design and implementation, OSDI’08, pages
209–224, Berkeley, CA, USA, 2008. USENIX Association.

[3] Larry Doolittle and Jon Nelson. Boa webserver. http://www.boa.org/.

[4] Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22:84–, March
1997.

[5] Michael Ellims, James Bridges, and Darrel C. Ince. The economics of unit testing. Empirical
Softw. Engg., 11:5–31, March 2006.

[6] Ondrej Filip, Libor Forst, Pavel Machek, Martin Mares, and Ondrej Zajicek. The bird
internet routing daemon project. http://bird.network.cz/, 2011.

[7] Rachid Guerraoui and Maysam Yabandeh. Model checking a networked system without the
network. In Proceedings of the 8th USENIX conference on Networked systems design and
implementation, NSDI’11, pages 17–17, Berkeley, CA, USA, 2011. USENIX Association.

[8] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code gener-
ation and optimization: feedback-directed and runtime optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[9] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents. Computer,
26:18–41, July 1993.

[10] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation, PLDI ’05,
pages 190–200, New York, NY, USA, 2005. ACM.

[11] Technical University of Madrid. Vnuml - virtual network user mode linux. http://www.
uni-koblenz.de/˜vnuml/.

[12] Marco Primi. Libpaxos: Open-source paxos. http://libpaxos.sourceforge.net/.

[13] Raimondas Sasnauskas, Jó Ágila Bitsch Link, Muhammad Hamad Alizai, and Klaus
Wehrle. Kleenet: automatic bug hunting in sensor network applications. In Proceedings of
the 6th ACM conference on Embedded network sensor systems, SenSys ’08, pages 425–426,
New York, NY, USA, 2008. ACM.

[14] David Wheeler. Sloccount. http://www.dwheeler.com/sloccount/.

[15] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao
Yang, Fan Long, Lintao Zhang, and Lidong Zhou. Modist: transparent model check-
ing of unmodified distributed systems. In Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pages 213–228, Berkeley, CA, USA, 2009.
USENIX Association.

110

http://www.boa.org/
http://bird.network.cz/
http://www.uni-koblenz.de/~vnuml/
http://www.uni-koblenz.de/~vnuml/
http://libpaxos.sourceforge.net/
http://www.dwheeler.com/sloccount/

A Evaluation Test Configurations

This sections provides enough detail in order to reproduce all the tests performed in section 8.
We omit any source code to the programs as it is included in the project archive.

A.1 Boa

In this subsection, we provide full details about all tests performed when analysing the perfor-
mance of our system with Boa.

A.1.1 GET Requests

Listing 26: Showing the 29 handcrafted GET requests.

1 const char* REQUESTS[] = {
2 "", // 0
3 "GET / HTTP/1.1\r\n\r\n", // 1
4 "GET //files/./more/../nesting/index.html HTTP/1.1\r\n\r\n", // 2
5 "GET /bar/index.html HTTP/1.1\r\n\r\n", // 3
6 "GET /in<de&>\\x.html HTTP/0.9\r\n\r\n", // 4
7 "GET /in<de&>\\x.html HTTP/1.1\r\n\r\n", // 5
8 "GET /ind??##ex.html HTTP/1.1\r\n\r\n", // 6
9 "GET /index.html HTTP/1.1\r\nHost: klEE.com:8080\r\n\r\n", // 7

10 "GET /index.html HTTP/1.1\r\nRange: bytes=0-1, 3-4\r\n\r\n", // 8
11 "GET /index.html HTTP/1.1\r\nRange: bytes=0-2\r\n\r\n", // 9
12 "GET /index.html HTTP/1.1\r\nRange: bytes=500-550\r\n\r\n", // 10
13 "GET /index.html HTTP/1.1\r\n\r\n", // 11
14 "GET /index.html HTTP/2.3\r\n\r\n", // 12
15 "GET /index.html HT\rTP/\n1.1\r\r\n", // 13
16 "GET /index_non_exist.html HTTP/1.1\r\n\r\n", // 14
17 "GET /no_dir/ HTTP/1.1\r\n\r\n", // 15
18 "GET /programs/index.html HTTP/1.1\r\n\r\n", // 16
19 "GET /sym1.html HTTP/1.1\r\nIf-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

\r\n\r\n", // 17
20 "GET /sym1.html HTTP/1.1\r\nIf-Range: Sat, 29 Oct 1994 19:43:31 GMT\r\nRange

: bytes=0-20\r\n\r\n", // 18
21 "GET /sym1.html HTTP/1.1\r\n\r\n", // 19
22 "GET /sym2.html HTTP/1.0\r\n\r\n", // 20
23 "GET /sym2.html HTTP/1.1\r\n\r\n", // 21
24 "GET /˜/index.html HTTP/1.1\r\n\r\n", // 22
25 "GET /˜md207/index.html HTTP/1.1\r\n\r\n", // 23
26 "GET sym1.html HTTP/1.1\r\n\r\n", // 24
27 "SET /index.html HTTP/1.1\r\nRange: bytes=0-2\r\n\r\n", // 25
28 "HEAD /sym1.html HTTP/0.9\r\n\r\n", // 26
29 "HEAD /sym1.html HTTP/1.1\r\n\r\n", // 27
30 "POST /index.html HTTP/1.1\r\nContent-Length: 5\r\n\r\nHello" // 28
31 };

A.1.2 Function List

Listing 27: Showing the list of functions used to compute the code coverage metrics.

1 #----------
2 # alias.c |
3 #----------
4 get_alias_hash_value
5 add_alias
6 find_alias

111

7 translate_uri
8
9 #--------

10 # boa.c |
11 # -------
12 __user_main
13 main_boa_server
14 parse_commandline
15 create_server_socket
16 drop_privs
17 fixup_server_root
18
19 #-----------
20 # buffer.c |
21 #-----------
22 req_write
23 req_write_escape_html
24 req_flush
25 escape_string
26
27 # ----------
28 # config.c |
29 # ----------
30 c_set_string
31 c_set_int
32 c_set_unity
33 c_add_mime_type
34 c_add_mime_types_file
35 c_add_alias
36 lookup_keyword
37 apply_command
38 trim
39 parse
40 read_config_files
41
42 # disabled as we don’t support access / cgi
43 #c_add_access
44 #c_add_cgi_env
45
46 # disabled due to no support of changing of users etc
47 #c_set_user
48 #c_set_group
49
50 #--------
51 # get.c |
52 #--------
53 init_get
54 get_dir
55 get_cachedir_file
56 index_directory
57
58 # disabled as not called
59 #process_get
60
61 #---------
62 # hash.c |
63 #---------
64 boa_hash
65 fnv1a_hash
66 hash_insert

112

67 hash_find
68 add_mime_type
69 get_mime_hash_value
70 get_mime_type
71 get_homedir_hash_value
72 get_home_dir
73
74
75 #-------
76 # ip.c |
77 #-------
78 bind_server
79 ascii_sockaddr
80 net_port
81
82 #--------
83 # log.c |
84 #--------
85 open_logs
86 log_access
87 log_error_doc
88 boa_perror
89 log_error_time
90 log_error
91 log_error_mesg
92 log_error_mesg_fatal
93
94 #----------
95 # queue.c |
96 #----------
97 block_request
98 ready_request
99 dequeue

100 enqueue
101 range_pool_pop
102 range_pool_push
103 range_add
104 ranges_fixup
105 range_parse
106
107 # disabled as only triggered on high limits
108 #range_pool_empty
109 #range_abort
110 #ranges_reset
111
112 #---------
113 # read.c |
114 #---------
115 read_header
116
117 # never triggered as it’s for POST
118 #read_body
119 #write_body
120
121 #------------
122 # request.c |
123 #------------
124 new_request
125 get_request
126 sanitize_request

113

127 free_request
128 process_requests
129 process_logline
130 process_header_end
131 process_option_line
132
133 #-------------
134 # response.c |
135 #-------------
136 http_ver_string
137 print_content_type
138 print_content_length
139 print_last_modified
140 print_http_headers
141 print_content_range
142 print_partial_content_continue
143 print_partial_content_done
144 complete_response
145 send_r_request_ok
146 send_r_no_content
147 send_r_partial_content
148 send_r_moved_perm
149 send_r_moved_temp
150 send_r_not_modified
151 send_r_bad_request
152 send_r_unauthorized
153 send_r_forbidden
154 send_r_not_found
155 send_r_request_uri_too_long
156 send_r_invalid_range
157 send_r_error
158 send_r_not_implemented
159
160 # disabled due to CGI
161 #send_r_bad_gateway
162 # disabled as sent when exceeding number of connections
163 #send_r_service_unavailable
164
165 # disabled as never used
166 #send_r_bad_version
167 #send_r_precondition_failed
168 #send_r_length_required
169 #send_r_continue
170
171 #-----------
172 # select.c |
173 #-----------
174 loop
175 fdset_update
176
177 #-------------
178 # timestamp.c|
179 #-------------
180 timestamp
181
182 #---------
183 # util.c |
184 #---------
185 clean_pathname
186 get_commonlog_time

114

187 month2int
188 date_to_tm
189 modified_since
190 to_upper
191 unescape_uri
192 rfc822_time_buf
193 simple_itoa
194
195 # disabled as they require POST + CGI
196 #create_temporary_file
197 #boa_atoi

A.1.3 Non-Symbolic Runs

Listing 28: Non-symbolic runs.

1 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 0

2 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 1

3 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc --split 1

4 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 2

5 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 3

6 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 4

7 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 5

8 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 6

9 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 7

10 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 8

11 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 9

12 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 10

13 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 11

14 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 12

15 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 13

16 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 14

17 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 15

18 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 16

19 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 17

20 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 18

21 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19

22 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc --split 19

115

23 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 20

24 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 21

25 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 22

26 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 23

27 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 24

28 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 25

29 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 26

30 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 27

31 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 28

A.1.4 Symbolic Runs

Note that the --split switch was used on two requests in order to increase the code coverage
by a small fraction – the switch sends the HTTP request in 3 chunks, waiting 1 second between
each send.

Listing 29: Symbolic runs.

1 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0

2 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4

3 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8

4 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9

5 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10

6 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14

7 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17

8 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 19

9 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 20

10 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 22

11 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 25

12 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 25

13 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 22

14 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 22

15 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 14

16 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 19

116

17 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 19

18 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 10

19 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 14

20 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 10

21 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 22 25

22 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 17

23 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 19

24 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 17

25 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 22

26 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 10

27 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 20

28 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 25

29 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 20

30 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 22

31 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 19

32 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 4 8

33 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 19 20

34 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 20 22

35 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 19 25

36 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 9 25

37 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 17 20

38 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 9 14

39 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 14 25

40 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 19 20

41 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 17 20

42 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 4 14

43 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 8 25

44 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 22 25

45 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 19 22

46 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 9 17

117

47 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 17 19

48 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 17 25

49 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 9 14

50 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 14 19

A.1.5 Constrained Symbolic Runs

Listing 30: Constrained symbolic runs.

1 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 --printable

2 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 --printable

3 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 --printable

4 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 --printable

5 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 --printable

6 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 --printable

7 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 --printable

8 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 19 --printable

9 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 20 --printable

10 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 22 --printable

11 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 25 --printable

12 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 25 --printable

13 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 22 --printable

14 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 22 --printable

15 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 14 --printable

16 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 17 19 --printable

17 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 19 --printable

18 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 10 --printable

19 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 14 --printable

20 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 10 --printable

21 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 22 25 --printable

22 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 9 17 --printable

23 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 19 --printable

118

24 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 17 --printable

25 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 22 --printable

26 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 10 --printable

27 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 20 --printable

28 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 14 25 --printable

29 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 20 --printable

30 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 8 22 --printable

31 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 10 19 --printable

A.1.6 Failure Injected Runs

Listing 31: Failure injected runs.

1 klee --optimize --disable-inlining --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 --max-sys-fail 1

2 klee --optimize --disable-inlining --max-memory=1200 --max-memory-inhibit --
distributed-mode --distrib-runtime --libc=uclibc boa.bc 19 --max-sys-fail 2

A.2 Invariants

For the invariants framework performance assessment, we run the simplistic implementation of
a 2-Phase Commit using the command shown in Listing 32.

Listing 32: Command used to run the 2PC program.

1 klee --distributed-mode --distrib-runtime --libc=uclibc --invariants-path=source
.minv 2pc.bc 5 1 --corrupt-packet-count 1 --corrupt-data-size 1

Listing 33: Invariant used in 2PC run.

1 invariant decisionConsistency(data[] d) : nodes, states, keys {
2 return d.equalElements();
3 }
4
5 string[] nodes() {
6 return sys.nodes();
7 }
8
9 int[] states(string node) {

10 return int[1] ;
11 }
12
13 string[] keys(string node, int state) {
14 return string["decision"];
15 }

A.3 Scalability Tests

In the rest of this subsection, we give full details about the scalability test runs.

119

A.3.1 Deadlock Detection Runs

Listing 34: Commands used to assess deadlock detection effects.

1 klee --optimize --distributed-mode --distrib-runtime --libc=uclibc boa.bc 19 0
--max-sys-fail 1

2 klee --optimize --distributed-mode --distrib-runtime --libc=uclibc boa.bc 19 4
--max-sys-fail 1

3 klee --optimize --distributed-mode --distrib-runtime --libc=uclibc boa.bc 19 22
--max-sys-fail 1

4 klee --detect-stalled=0 --optimize --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 0 --max-sys-fail 1

5 klee --detect-stalled=0 --optimize --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 4 --max-sys-fail 1

6 klee --detect-stalled=0 --optimize --distributed-mode --distrib-runtime --libc=
uclibc boa.bc 19 22 --max-sys-fail 1

A.3.2 Network Size Runs

Listing 35: Commands used to assess network size effects.

1 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
4096

2 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
8192

3 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
16384

A.3.3 Packet Loss Runs

Listing 36: Commands used to assess packet loss effects.

1 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1 3
2 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 2 3
3 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 5 3
4 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 3 3
5 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1 3

--lost-packet-count 1
6 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 2 3

--lost-packet-count 1
7 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 5 3

--lost-packet-count 1
8 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 3 3

--lost-packet-count 1
9 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1 3

--lost-packet-count 2
10 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 2 3

--lost-packet-count 2
11 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 5 3

--lost-packet-count 2
12 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 3 3

--lost-packet-count 2
13 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1 3

--lost-packet-count 3
14 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 2 3

--lost-packet-count 3
15 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 5 3

--lost-packet-count 3

120

16 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 3 3
--lost-packet-count 3

A.3.4 Symbolic Communication Runs

Listing 37: Commands used to assess symbolic communication effects.

1 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 1 3

2 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 2 3

3 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 5 3

4 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 10 3

5 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 20 3

6 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
match 50 3

7 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 1 3

8 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 2 3

9 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 5 3

10 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 10 3

11 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 20 3

12 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc --
symbolic --match 50 3

A.3.5 Filesystem Transfer Rate

Listing 38: Commands used to assess file transfer rate.

1 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
128bytes

2 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
1024bytes

3 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
4096bytes

4 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
128kbytes

5 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
512kbytes

6 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
64kbytes

7 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
1mbytes

8 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
5mbytes

9 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
10mbytes

10 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
20mbytes

11 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
40mbytes

12 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc file_read.bc
50mbytes

121

A.3.6 Network Transfer Rate

Listing 39: Commands used to assess network transfer rate.

1 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
4096

2 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
8192

3 klee --no-output --distributed-mode --distrib-runtime --libc=uclibc echo.bc 1
16384

122

	Introduction
	Motivation
	Aims
	Approach
	Contributions
	Report Structure

	Background
	Symbolic Execution
	Example

	LLVM
	KLEE
	Overview
	Operation & Architecture
	Query Optimisation
	State Scheduling & Environment

	KleeNet
	Contributions
	Concept & Design
	Evaluation

	MoDist
	Overview
	Implementation
	Evaluation

	Model Checking Without a Network
	Overview
	Evaluation
	Conclusion

	Summary

	Architecture, Networking & Filesystem Design
	Requirements
	Approach
	World Model

	Architecture
	Single Process
	Symbolic Network Topology
	Copy on Send Branching
	Boot-Strapping
	OS State & Interaction
	Scheduling
	Deadlock Detection
	Closed World

	Networking
	Event System
	Network Topology

	Filesystem
	OS-backed Files
	Extra Features

	Summary

	Replay Framework
	Failure Model
	Packet Loss & Re-Ordering
	Symbolic Automark
	System Call Failures

	Distributed Invariants
	Minvariant

	Implementation
	Overview
	System
	Existing Model
	Modified Model
	Bootstrapping
	Event System
	World Branching
	Scheduler
	Invariants Framework
	Replay Framework
	Code Coverage

	Runtime
	Special Functions
	Networking
	Filesystem
	Failure Model
	Runtime Structures

	Summary

	Evaluation
	Goals and Methodology
	Test Configurations

	Boa Web Server
	Code Coverage
	Evaluation Tests
	Bugs Found
	Results
	Untestable Code
	Summary

	Invariants Framework
	Synthetic Scenarios
	Deadlock via Packet Loss
	Fragile Parsing Code
	Fault Tolerance

	Scalability
	Limitations
	Summary

	Development Methodology
	Code Base
	Tools & Language
	Testing
	Test Example

	Conclusion
	Future Work

	Evaluation Test Configurations
	Boa
	GET Requests
	Function List
	Non-Symbolic Runs
	Symbolic Runs
	Constrained Symbolic Runs
	Failure Injected Runs

	Invariants
	Scalability Tests
	Deadlock Detection Runs
	Network Size Runs
	Packet Loss Runs
	Symbolic Communication Runs
	Filesystem Transfer Rate
	Network Transfer Rate

